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Abstract. We find a two term asymptotic expansion for the optimal expected
value of a sequentially selected monotone subsequence from a random permu-

tation of length n. A striking feature of this expansion is that it tells us that
the expected value of optimal selection from a random permutation is quan-
tifiably larger than optimal sequential selection from an independent sequence
of uniformly distributed random variables; specifically, it is larger by at least
(1/6) logn+O(1).

1. Sequential subsequence problems

In the classical monotone subsequence problem, one chooses a random permu-
tation π : [1 : n] → [1 : n] and one considers the length of its longest increasing
subsequence,

Ln = max{k : π[i1] < π[i2] < · · · < π[ik], where 1 ≤ i1 < i2 · · · < ik ≤ n}.
On the other hand, in the sequential monotone subsequence problem one views the
values π[1], π[2], . . . as though they were presented over time to a decision maker
who, when shown the value π[i] at time i, must decide (once and for all) either to
accept or reject π[i] as an element of the selected increasing subsequence.

The decision to accept or reject π[i] at time i is based on just the knowledge of the
time horizon n and the observed values π[1], π[2], . . . , π[i]. Thus, in slightly more
formal language, the sequential selection problem amounts to the consideration of
random variables of the form

(1) Lτ
n = max{k : π[τ1] < π[τ2] < · · · < π[τk], where 1 ≤ τ1 < τ2 · · · < τk ≤ n},

where the indices τi, i = 1, 2, . . ., are stopping times with respect to the increasing
sequence of σ-fields Fk = σ{π[1], π[2], . . . , π[k] }, 1 ≤ k ≤ n. We call a sequence of
such stopping times a feasible selection strategy, and, if we use τ as a shorthand for
such a strategy, then the quantity of central interest here can be written as

(2) s(n) = sup
τ

E[Lτ
n],

where one takes the supremum over all feasible selection strategies.
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It was conjectured in Baer and Brock (1968) that

(3) s(n) ∼
√
2n as n → ∞,

and a proof of this relation was first given in Samuels and Steele (1981). A much
simpler proof of (3) was later given by Gnedin (2000) who made use of a recursion
that had been used for numerical computations by Baer and Brock (1968). The
main purpose of this paper is to show how by a more sustained investigation of
that recursion one can obtain a two term expansion.

Theorem 1 (Sequential selection from a random permutation). For n → ∞ one
has the asymptotic relation

(4) s(n) =
√
2n+

1

6
log n+O(1).

Given what is known for some closely related problems, the explicit second order
term (log n)/6 gives us an unanticipated bonus. For comparison, suppose we con-
sider sequential selection from a sequence of n independently uniformly distributed
random variables X1, X2, . . . , Xn. In this problem a feasible selection strategy τ is
again expressed by an increasing sequence of stopping times τj , j = 1, 2, . . ., but now

the stopping times are adapted to the increasing σ-fields F̂j = σ{X1, X2, . . . , Xj}.
The analog of (1) is then

(5) L̂τ
n = max{k : Xτ1 < Xτ2 < · · · < Xτk , where 1 ≤ τ1 < τ2 · · · < τk ≤ n},

and the analog of (2) is given by

ŝ(n) = sup
τ

E[L̂τ
n].

Bruss and Robertson (1991) found that for ŝ(n) one has a uniform upper bound

(6) ŝ(n) ≤
√
2n for all n ≥ 1,

so, by comparison with (4), we see there is a sense in which sequential selection
of a monotone subsequence from a permutation is easier than sequential selection
from an independent sequence. In part, this is intuitive; each successive observation
from a permutation gives useful information about the subsequent values that can
be observed. By (4) one quantifies how much this information helps, and, so far,
we have only an analytical understanding of the source of (1/6) logn. A genuinely
probabilistic understanding of this term remains elusive.

Since (6) holds for all n and since (4) is only asymptotic, it also seems natural
to ask if there is a relation between ŝ(n) and s(n) that is valid for all n. There is
such a relation if one gives up the logarithmic gap.

Theorem 2 (Selection for random permutations vs. random sequences). One has
for all n = 1, 2, . . . that

ŝ(n) ≤ s(n).

Here we should also note that much more is known about ŝ(n) than just (6); in
particular, there are several further connections between s(n) and ŝ(n). These are
taken up in a later section, but first it will be useful to give the proofs of Theorems
1 and 2.
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The larger context for the problems studied here is the theory of Markov deci-
sion processes (or MDPs) which is closely tied to the theory of optimal stopping
and the theory of on-line algorithms (cf. Puterman (1994), Shiryaev (2008), and
Flat and Woeginger (1998)). The traditional heart of the theory of MDPs is the
optimality equation (or Bellman equation) which presents itself here as the identity
(7). One of our main motivations has been the expectation that (7) gives one an
appropriate path for examining how one can extract delicate asymptotic informa-
tion from max-type non-linear recursions of the kind that occur in the theory of
MDPs. In this respect, it seems hopeful that tools that parallel the comparison
principles of Section 3 and the approximate solutions of Section 4 may be broadly
applicable, although the details will necessarily vary from problem to problem.

The proof of Theorem 1 takes most of our effort, and it is given over the next few
sections. Section 2 develops the basic recurrence relations, and Section 3 develops
stability relations for these recursions. In Section 4 we then do the calculations that
support a candidate for the asymptotic approximation of s(n), and we complete
the proof of Theorem 1. Our arguments conclude in Section 5 with the brief—and
almost computation free—proof of Theorem 2. Finally, in Section 6 we discuss
further relations between s(n), ŝ(n), and some other closely related quantities that
motivate consideration of two open problems.

2. Recurrence relations

One can get a recurrence relation for s(n) by first step analysis. Specifically, we
take a random permutation π : [1 : n+ 1] → [1 : n+ 1], and we consider its initial
value π[1] = k. If we reject π[1] as an element of our subsequence, we are faced with
the problem of sequential selection from the reduced random permutation π′ on an
n-element set. Alternatively, if we choose π[1] = k as an element of our subsequence,
we are then faced with the problem of sequential selection for a reduced random
permutation π′′ of the set {k+1, k+2, . . . , n+1} that has n+1− k elements. By
taking the better of these two possibilities, we get from the uniform distribution of
π[1] that

s(n+ 1) =
1

n+ 1

n+1∑
k=1

max{s(n), 1 + s(n+ 1− k)}.(7)

From the definition (2) of s(n) one has s(1) = 1, so subsequent values can then be
computed by (7). For illustration and for later discussion, we note that one has the
approximate values:

n 1 2 3 4 5 6 7 8 9 10
s(n) 1 1.5 2 2.375 2.725 3.046 3.333 3.601 3.857 4.098√
2n 1.414 2 2.449 2.828 3.162 3.464 3.742 4 4.243 4.472

Here we observe that for the 10 values in the table one has s(n) ≤
√
2n, and, in

fact, this relation persists for all 1 ≤ n ≤ 174. Nevertheless, for n = 175 one has√
2n < s(n), just as (4) requires for all sufficiently large values of n.
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We also know from (2) that the map n �→ s(n) is strictly monotone increasing,
and, as a consequence, the recursion (7) can be written a bit more simply as

s(n+ 1) =
1

n+ 1
max

1≤k≤n

{
(n− k + 1)s(n) +

n∑
i=n−k+1

{s(i) + 1}
}

(8)

=
1

n+ 1
max

1≤k≤n

{
(n− k + 1)s(n) + k +

n∑
i=n−k+1

s(i)

}
.

In essence, this recursion goes back to Baer and Brock (1968), p. 408, and it is the
basis of most of our analysis.

3. Comparison principles

Given a map g : N → R and 1 ≤ k ≤ n, it will be convenient to set

(9) H(n, k, g) = k + (n− k + 1)g(n) +
n∑

i=n−k+1

g(i),

so the optimality recursion (8) can be written more succinctly as

(10) s(n+ 1) =
1

n+ 1
max

1≤k≤n
H(n, k, s).

The next two lemmas make rigorous the idea that if g is almost a solution of (10)
for all n, then g(n) is close to s(n) for all n.

Lemma 3 (Upper comparison). If δ : N → R
+, 1 ≤ g(1) + δ(1), and

(11)
1

n+ 1
max

1≤k≤n
H(n, k, g) ≤ g(n+ 1) + δ(n+ 1) for all n ≥ 1,

then one has

(12) s(n) ≤ g(n) +

n∑
i=1

δ(i) for all n ≥ 1.

Proof. We set Δ(i) = δ(1)+δ(2)+· · ·+δ(i), and we argue by induction. Specifically,
using (12) for 1 ≤ i ≤ n we have

H(n, k, s) = k + (n− k + 1)s(n) +

n∑
i=n−k+1

s(i)

≤ k + (n− k + 1)(g(n) + Δ(n)) +

n∑
i=n−k+1

{g(i) + Δ(i)},

so by monotonicity of Δ(·) we have

1

n+ 1
H(n, k, s) ≤ 1

n+ 1
H(n, k, g) + Δ(n).

Now, when we take the maximum over k ∈ [1 : n], the recursion (8) and the
induction condition (11) give us

s(n+ 1) ≤ 1

n+ 1
max

1≤k≤n
H(n, k, g) + Δ(n)

≤ g(n+ 1) + δ(n+ 1) + Δ(n) = g(n+ 1) + Δ(n+ 1),

so induction establishes (12) for all n ≥ 1. �
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Naturally, there is a lower bound comparison principle that parallels Lemma 3.
The statement has several moving parts, so we frame it as a separate lemma even
though its proof can be safely omitted.

Lemma 4 (Lower comparison). If δ : N → R
+, g(1)− δ(1) ≤ 1, and

g(n+ 1)− δ(n+ 1) ≤ 1

n+ 1
max

1≤k≤n
H(n, k, g) for all n ≥ 0,

then one has

g(n)−
n∑

i=1

δ(i) ≤ s(n) for all n ≥ 1.

4. An approximation solution

We now argue that the function f : N → R defined by

(13) f(n) =
√
2n+

1

6
log n

gives one an approximate solution of the recurrence equation (8) for n �→ s(n).

Proposition 5. There is a constant 0 < B < ∞ such that for all n ≥ 1, one has

(14) −Bn−3/2 ≤ 1

n+ 1

{
max

1≤k≤n
H(n, k, f)

}
− f(n+ 1) ≤ Bn−3/2.

First step: Localization of the maximum. To deal with the maximum in (14),
we first estimate

k∗(n) = locmaxk H(n, k, f).

From the definition (9) of H(n, k, f) we find

H(n, k + 1, f)−H(n, k, f) = 1− f(n) + f(n− k),

and, from the definition (13) of f , we see this difference is a monotone decreasing
function of k; accordingly, we also have the representation

(15) k∗(n) = 1 +max{k : 0 ≤ 1− f(n) + f(n− k)}.
Now, for each n = 1, 2, . . . we then consider the function Dn : [0, n] → R defined by
setting

Dn(x) = 1− f(n) + f(n− x) = 1− {
√
2n−

√
2(n− x)} − 1

6
{log n− log(n− x)}.

This function is strictly decreasing with Dn(0) = 1 and Dn(n) = −∞, so there is
a unique solution of the equation Dn(x) = 0. For x ∈ [0, n) we also have the easy
bound

Dn(x) = 1− 1

2

∫ 2n

2(n−x)

1√
u
du− 1

6
log(n/(n− x)) ≤ 1− x√

2n
.

This gives us Dn(
√
2n) ≤ 0, so by monotonicity we have xn ≤

√
2n.

To refine this bound to an asymptotic estimate, we start with the equation
Dn(xn) = 0 and we apply Taylor expansions to get

1 =
√
2n

{
1− (1− xn/n)

1/2
}
− 1

6
log(1− xn/n)

=
√
2n

{xn

2n
+O(x2

n/n
2)

}
+O(xn/n).
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By simplification, we then get

(16)
√
2n = xn +O(x2

n/n) +O(xn/n
1/2) = xn +O(1),

where in the last step we used our first bound xn ≤
√
2n.

Finally, by (16) and the characterization (15), we immediately find the estimate
that we need for k∗(n).

Lemma 6. There is a constant A > 0 such that for all n ≥ 1, we have

(17)
√
2n−A ≤ k∗(n) ≤

√
2n+A.

Remark 7. The relations (16) and (17) can be sharpened. Specifically, if we use a

two term Taylor series with integral remainders, then one can show
√
2n− 2 ≤ xn.

Since we already know that xn ≤
√
2n, we then see from the characterization (15)

and integrality of k∗(n) that we can take A = 2 in Lemma 6. This refinement does
not lead to a meaningful improvement in Theorem 1, so we omit the details of the
expansions with remainders.

Completion of proof of Proposition 5. To prove Proposition 5, we first note
that in the definition (9) of H(n, k, f) one has for all 1 ≤ k ≤ n that

(18)
1

n+ 1
H(n, k, f) = f(n) +

1

n+ 1

{
k −

k−1∑
i=1

(f(n)− f(n− i))

}
.

The task is to estimate the right-hand side of (18) when k = k∗(n) and k∗(n) is
given by (15).

For the moment, we assume that one has k ≤ D
√
n, where D > 0 is constant.

With this assumption, we find that after making Taylor expansions we get from
explicit summations that

k−1∑
i=1

(f(n)− f(n− i)) =
k−1∑
i=1

(√
2n−

√
2(n− i)

)
+

k−1∑
i=1

(
log n

6
− log(n− i)

6

)

=

k−1∑
i=1

(
i√
2n

+
i2

4n
√
2n

+O

(
i3

n5/2

))
+

k−1∑
i=1

(
i

6n
+O

(
i2

n2

))
=

(k − 1)k

2
√
2n

+
(k − 1)k(2k − 1)

24n
√
2n

+
(k − 1)k

12n
+O(n−1/2),(19)

where the implied constant of the remainder term depends only on D.
We now define r(n) by the relation k∗(n) =

√
2n + r(n), and we note by (17)

that |r(n)| ≤ A. Direct algebraic expansions then give us the elementary estimates

(k∗(n)− 1)k∗(n)

12n
=

1

6
+O(n−1/2)

and

(k∗(n)− 1)k∗(n)(2k∗(n)− 1)

24n
√
2n

=
1

6
+O(n−1/2),

where in each case the implied constant depends only on A.
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Estimation of the first summand of (19) is slightly more delicate than this since
we need to account for the dependence of this term on r(n); specifically we have

(k∗(n)− 1)k∗(n)

2
√
2n

=

(√
2n+ r(n)− 1

) (√
2n+ r(n)

)
2
√
2n

=
√
n/2 + r(n)− 1

2
+O(n−1/2).

Now, for a pleasing surprise, we note from the last estimate and from the definition
of k∗(n) and r(n) that we have cancellation of r(n) when we then compute the
critical sum; thus, one has simply

(20) k∗(n)−
k∗(n)−1∑

i=1

(f(n)− f(n− i)) =
√
n/2 +

1

6
+O(n−1/2).

Finally, from the formula (13) for f(·), we have the Taylor expansion

(21) f(n+ 1)− f(n) =
1√
2n

+
1

6n
+O(n−3/2),

so, when we return to the identity (18), we see that the estimates (20) and (21)
give us the estimate

1

n+ 1

{
max

1≤k≤n
H(n, k, f)

}
− f(n+ 1)

=
1

n+ 1

(√
n/2 +

1

6
+O(n−1/2)

)
+ f(n)− f(n+ 1) = O(n−3/2).

Here the implied constant is absolute, and the proof of Proposition 5 is complete.

Completion of proof of Theorem 1. Lemmas 3 and 4 combine with Proposition
5 to tell us that by summing the sequence n−3/2, n = 1, 2, . . ., and by writing
ζ(z) = 1 + 2−z + 3−z + · · · one has

|s(n)− f(n)| ≤ ζ(3/2)B ≤ (2.62)B for all n ≥ 1.

This is slightly more than one needs to complete the proof of Theorem 1.

5. Proof of Theorem 2

The sequential monotone selection problem is a finite horizon Markov decision
problem with bounded rewards and finite action space, and for such problems it is
known one cannot improve upon an optimal deterministic strategy by the use of
strategies that incorporate randomization (cf. Bertsekas and Shreve (1978), Corol-
lary 8.5.1). The proof of Theorem 2 exploits this observation by constructing a
randomized algorithm for the sequential selection of a monotone subsequence from
a random permutation.

We first recall that if ei, i = 1, 2, . . . , n + 1, are independent exponentially dis-
tributed random variables with mean 1 and if one sets

Yi =
e1 + e2 + · · ·+ ei

e1 + e2 + · · ·+ en+1
,

then the vector (Y1, Y2, . . . , Yn) has the same distribution as the vector of order
statistics (X(1), X(2), . . . , X(n)) of an i.i.d. sample of size n from the uniform distri-
bution (see e.g. Feller (1971), p. 77). Next we let A denote an optimal algorithm
for sequential selection of an increasing subsequence from an independent sample
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X1, X2, . . . , Xn from the uniform distribution, and we let τ (A) denote the associ-

ated sequence of stopping times. If L̂
τ (A)
n denotes the length of the subsequence that

is chosen from from X1, X2, . . . , Xn when one follows the strategy τ (A) determined
by A, then by optimality of A for selection from X1, X2, . . . , Xn we have

ŝ(n) = sup
τ

E[L̂τ
n] = E[L̂τ (A)

n ].

We use the algorithm A to construct a new randomized algorithm A′ for sequen-
tial selection of an increasing subsequence from a random permutation π : [n] �→ [n].
First, the decision maker generates independent exponential random variables ei,
i = 1, 2, . . . , n + 1, as above. This is done off-line, and this step can be viewed as
an internal randomization.

Now, for i = 1, 2, . . . , n, when we are presented with π[i] at time i, we compute
Xi = Yπ[i]. Finally, if at time i the value Xi would be accepted by the algorithm
A, then the algorithm A′ accepts π[i]. Otherwise the newly observed value π[i] is
rejected. By our construction we have

(22) E[Lτ (A′)
n ] = E[L̂τ (A)

n ] = ŝ(n).

Moreover, A′ is a randomized algorithm for the construction of an increasing
subsequence of a random permutation π. By definition, s(n) is the expected length
of a monotone subsequence selected from a random permutation by an optimal
deterministic algorithm, and by our earlier observation, the randomized algorithm
A′ cannot do better. Thus, from (22) one has ŝ(n) ≤ s(n), and the proof of Theorem
1 is complete.

6. Further developments and considerations

The uniform upper bound (6) was obtained by Bruss and Robertson (1991) as
a consequence of a bound on the expected value of the random variable

N(s) = max

{
|A| :

∑
i∈A

Xi ≤ s

}
,

where the observations {Xi : i ∈ [1 : n]} have a common continuous distribution
with support in [0,∞). This bound was extended in Steele (2016) to accommodate
non-identically distributed random variables, and, as a consequence, one finds some
new bounds for the sequential knapsack problems.

On the other hand, this extension does not help one to refine or generalize (6),
since, as Coffman et al. (1987) first observed, the sequential knapsack problem and
the sequential increasing subsequence problem are equivalent only when the obser-
vations are uniformly and identically distributed. Certainly, one may consider the
possibility of analogs of (6) for non-identically distributed random variables, but, as
even deterministic examples show, the formulation of such analogs is problematical.

Here we should also note that Gnedin (1999) gave a much different proof of (6),
and, moreover, he generalized the bound in a way that accommodates random sam-
ples with random sizes. More recently, Arlotto et al. (2015) obtained yet another
proof of (6) as a corollary to bounds on the quickest selection problem, which is an
informal dual to the traditional selection problem.

Since the bound of (6) is now well understood from several points of view, it is
reasonable to ask about the possibility of some corresponding uniform bound on
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s(n). The numerical values that we noted after the recursion (6) and the relation

(23) s(n) =
√
2n+

1

6
log n+O(1)

from Theorem 1 both tell us that one cannot expect a uniform bound for s(n) that
is as simple as that for ŝ(n) given by (6). Nevertheless, numerical evidence suggests
that the O(1) term in (23) is always negative. The tools used here cannot confirm
this conjecture, but the multiple perspectives available for (6) give one hope.

A closely related issue arises for ŝ(n) when one considers lower bounds. Here the
first steps were taken by Bruss and Delbaen (2001) who considered i.i.d. samples of
size Nν where Nν is an independent random variable with the Poisson distribution
with mean ν. If now we write ŝ(ν) for the expected value of the length of the
subsequence selected by an optimal algorithm in the Bruss-Delbaen framework,
then they proved that there is a constant c > 0 such that

√
2ν − c log ν ≤ ŝ(ν);

moreover, Bruss and Delbaen (2004) subsequently proved that for the optimal fea-
sible strategy τ∗ = (τ1, τ2, . . .) the random variable

L̂τ∗
Nν

= max{k : Xτ1 < Xτ2 < · · · < Xτk , where 1 ≤ τ1 < τ2 · · · < τk ≤ Nν}

also satisfies a central limit theorem. Arlotto et al. (2015) considered the de-
Poissonization of these results, and it was found that one has the corresponding

CLT for L̂τ∗
n where the sample size n is deterministic. In particular, one has the

bounds √
2n− c log n ≤ ŝ(n) ≤

√
2n.

Now, by analogy with (23), one strongly expects that there is a constant c > 0 such
that

(24) ŝ(n) =
√
2n− c log n+O(1).

Still, a proof of this conjecture is reasonably remote, since, for the moment, there
is not even a compelling candidate for the value of c.

For a second point of comparison, one can recall the non-sequential selection
problem where one studies

�(n) = E[max{k : Xi1 < Xi2 < · · · < Xik , 1 ≤ i1 < i2 < · · · < ik ≤ n}].

Through a long sequence of investigations culminating with Baik et al. (1999), it is
now known that one has

(25) �(n) = 2
√
n− αn1/6 + o(n1/6),

where the constant α = 1.77108 . . . is determined numerically in terms of solutions
of a Painlevé equation of type II. Romik (2014) gives an elegant account of the
extensive technology behind (25), and there are interesting analogies between �(n)
and s(n). Nevertheless, a proof of the conjecture (24) seems much more likely to
come from direct methods like those used here to prove (23).

Finally, one should note that the asymptotic formulas for n �→ �(n), n �→ s(n),
and n �→ ŝ(n) all suggest that these maps are concave, but so far only n �→ ŝ(n)
has been proved to be concave (cf. Arlotto et al. (2015), p. 3604).
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