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Abstract

We present a model describing the demand dynamics of two new products com-

peting for a limited target market. The demand trajectories of the two products

are driven by a market saturation effect and an imitation effect reßecting the prod-

uct experience of previous adopters. In this general setting, we provide analytical

results for the sales trajectories and lifecycle sales of the competing products. We

use these results to study the impact of launch time delay (acceleration) on overall

lifecycle sales. Our analysis support trade-off rules that can be used in the tacti-

cal decision-making of a product development team. Taking the perspective of a

team developing one of the competing products, we Þnd that the proÞt-maximizing

launch time response exhibits a counter-intuitive behavior, which results from non-

concavities in the underlying objective function. In particular, we show that a Þrm

facing a launch time delay from a competing product might beneÞt from moving

its own product launch forward in time, opposed to using the softened competitive

situation to further improve its cost position. We identify conditions under which

such non-concavities arise and a marginal cost-beneÞt analysis leads to sub-optimal

launch time decisions. Finally, we analyze the Nash equilibrium in launch time

decisions of the two competing brands.

KEYWORDS: New Product Development, Marketing-Operations Coordination,

Cross-functional Performance Metrics, Cost of Delay, Competitve New Product De-

mand Dynamics
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1 Introduction

A common problem in product development is the trade-off between the four perfor-

mance metrics: product development lead-time, product unit cost, technical product per-

formance, and overall development cost (Smith and Reinertsen 1991, Figure 1a). To Þnd

a balance between these conßicting objectives in their day-to-day decision-making, de-

velopment teams typically rely on simple trade-off rules. Such trade-off rules attempt to

�dollarize� (i.e. assign a Þnancial value to) changes along any of these metrics and thereby

to create a common ground for comparison across organizational functions (Ulrich and

Eppinger 1999, Figure 1b). However, such a �dollarization� requires that the development

team is able to compute the impact of a change in one of the four performance metrics on

the new product�s proÞtability.

While understanding the Þnancial impact of changes in development cost and product

unit cost is relatively simple, understanding the Þnancial impact of a change in launch

time is rather difficult: what is the cost of a one day launch delay, e.g. in the automotive

industry? One million dollars? Maybe two? How can we adequately capture the long-term

impact on market share resulting from the launch delay? Clearly, whichever answer we

choose will have a substantial impact on the quality of the development team�s decision

making.

Yet, despite their pivotal role in guiding decision making and cross functional coor-

dination in the development of a new product, the formation of these trade-off rules is

commonly done in an ad-hoc fashion. One major shortcoming of the current decision

making process is its simplistic treatment of demand dynamics over the product lifecycle.

Standard models either assume that the lifecycle demand of the new product is exogenous

and therefore not affected by a delayed launch (the sales curve is just shifted into the

future) or that there is a pre-determined market window, after which sales are reduced

to zero (Ulrich and Eppinger 1999). Factors that have been identiÞed as critical success

drivers for a new product, such as time-to-market relative to competition (Porter 1985,

Kalish and Lilien 1986), or product diffusion (Bass 1969, Krishnan et al. 2000) are, at

best, only included qualitatively (Ulrich and Eppinger 1999).

The Þrst objective of the present manuscript is to overcome this shortcoming by de-

veloping quantitative trade-off rules with respect to product development lead-time. In

contrast to the simplistic treatment of demand dynamics prevalent in existing models, the

trade-off rules we derive are grounded on a detailed analysis of competition and product

diffusion, and thereby allow for an endogenous analysis of the lifecycle demand with respect
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to changes in development lead time. Our second objective is to demonstrate how such

trade-off rules can be used for coordination between conßicting objectives of marketing

and operations.

Our work is contributing to three literature streams discussed in Section 2: product

development decisions, normative models of competitive product diffusion, and marketing-

operations coordination. SpeciÞcally, we provide the following novel results. First, we

present closed form expressions for the diffusion of two competing products within the

same category modeling market saturation and word-of-mouth effects. SpeciÞcally, we

derive closed-form expressions for the product lifecycle sales as functions of the time gap

between the launch of the two brands (Theorem 1). We also investigate how lifecycle

sales are inßuenced by the values of diffusion parameters at the brand as well as the

category level (Theorem 2). We extend previous models of competitive product diffusion

by explicitly modeling the interactions (word-of-mouth) between potential adopters of one

brand with previous adopters from the same brand as well as with previous adopters

from a competing brand. While this effect has been observed empirically (Mahajan et

al. 1993), previous research has not formally modeled demand dynamics in the presence

of such interactions (See Table 1 for an overview of related research in competitive new

product diffusion).

Second, we analyze the coordination between the marketing and the operations efforts

of a team developing one of the competing products. In particular, we model the team�s

decision of Þnding �the optimal� time of product launch. From a marketing perspective, the

team would like to launch the product sooner, as this would lead to higher unit sales over

the lifecycle. From the operations perspective, the team would like to spend additional

time on the detailed engineering of the product and the corresponding production process,

as this would lead to lower unit costs. We show how a project manager can resolve this

tension by deriving (dollarizing) how a change in launch time impacts the proÞtability of

the new product. We derive conditions under which the immediate launch of a new product

is optimal. We also demonstrate that there are situations where making the launch time

decisions on a marginal proÞt basis can be misleading: we show that it might be optimal

to delay market launch despite a negative marginal value of a longer development time

(Theorem 3).

Third, we analyze the existence and the nature of the Nash equilibrium with respect

to the market entry times of the two competing products. For the case of completely

symmetric products, we derive sufficient conditions for the existence of a Nash equilibrium

for which both competitors launch immediately. In addition, we identify the range of cost
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parameters for which the pure strategy equilibrium does not exist. While the existence

of a pure Nash equilibrium for arbitrary set of problem parameters is hard to establish

analytically, we derive a set of conditions that characterize the nature of the equilibrium

for asymmetric players.

The remainder of this manuscript is organized as follows. After reviewing the related

literature (Section 2), we present a model of competitive diffusion and formulate the

optimization problem for the time-to-market for one of the competitors given the estimated

entry time for the other competitor (Section 3). In Section 4 we present closed-form

expressions for the sales trajectories and lifecycle sales of the two competing products.

Section 5 uses these results to balance the marketing and operations metrics in deciding

about the launch time of a new product, followed by our equilibrium analysis presented

in Section 6. Section 7 demonstrates the practical implications of our work and Section 8

provides concluding remarks.

2 Related Literature

Ulrich and Eppinger (1999) recommend a four-step procedure towards evaluating, among

others, the trade-off between development lead-time and cost: (1) Build a base case Þnan-

cial model (including a spreadsheet and a representation of lifecycle demand), (2) Perform

sensitivity analysis to understand the key assumptions of the model, (3) Use sensitivity

analysis to understand the trade-offs (including the trade-off between cost and time), and

(4) Consider the inßuence of qualitative factors, including competition and other market

characteristics.

The strength of this approach is its simplicity and the little effort required for imple-

mentation. However, the approach following steps (1)-(3) is biased towards the easily

measurable costs, including idle production plants, the cost of capital, and the expenses

related to additional development time, while ignoring the �hidden cost� associated with

the negative impact on revenues that results from a delayed launch.

A good example of this approach can be found in Clark (1989), who reports: �Research

indicates that each day of delay in market introduction costs an automobile Þrm over

$1 million in lost proÞts, not including the impact of lost market share.� While such

numbers are certainly effective in directing senior management�s attention to even minor

launch delays, they are of little value when guiding development teams in their operational

decisions. Whether or not a development team in the automobile industry around 1989

would be well advised in spending $1.5 million to avoid a one day launch delay depends
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on how large the market share loss really turns out to be. Thus, a more detailed model is

needed, that goes beyond treating the market side as a qualitative factor or a residual.

Several authors provide qualitative guidelines on how revenues are affected by a slow

(delayed) versus a fast (accelerated) launch, four of which are displayed in Figure 2. Urban

and Hauser (1993) argue that reducing lead-time will increase lifecycle sales, however, with

diminishing returns. It is also suggested that an accelerated launch will increase cost as

well as risk. Given that additional time in development reduces cost at a diminishing rate,

the graph suggests the existence of an optimal launch time. While Urban and Hauser do

emphasize the importance of competition, neither sequence of entry nor the duration of

the Þrst mover monopoly is visible in their graph.

Rosenthal (1992) takes a slightly different approach. Based on a forthcoming competi-

tor�s product introduction, a late launch will give the product a shorter growth period, and

thereby smaller peak sales. Moving from actual (late) introduction to the earlier, planned

introduction seems to indicate increasing returns (peak moves up, so does duration of the

monopoly period). The framework explicitly includes competition - assumed to begin at

the point in time when sales start to fall - and takes the perspective of the Þrst mover.

Kalyanaram and Krishnan (1997) suggest a convex-concave relationship between lead-

time and sales. The convex part of their graph, the authors argue, results from the product

diffusion in its monopoly phase. The switching point (from convex to concave) indicates

the beginning of the competitive phase. Similar to Rosenthal�s model, the authors include

competition and take the perspective of the Þrst mover.

Finally, Wheelwright and Clark (1992) argue that there are steep gains associated with

shortened development lead-times, especially for companies who are �head to head� with

their competition. Getting too far ahead does not yield the desired increase in proÞts, and

can even result in proÞt loss.

Taken together, all four graphs in Figure 2 emphasize the impact of changes in product

development lead-time on a product�s lifecycle sales and proÞts. However, by contrasting

the four graphs, we can make a couple of interesting observations. First, all four curves

are purely qualitative and support, at best, step (4) in the Ulrich and Eppinger procedure.

Since none of the curves is described in a functional form, they are impossible to use for

quantitative decision-making. Second, none of the four graphs is derived formally from

a transparent set of assumptions, making it hard for a project manager to judge if the

corresponding model Þts her current situation. In particular, the effects of competition

and diffusion (the main differentiators from spreadsheet based models) are included in a

rather informal manner. Finally, a comparison of the four graphs in Figure 2 is difficult,
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since the graphs differ with respect to both the horizontal axis and the graph plotted along

the vertical axis. We will revisit Figure 2 in Section 7, where we display our analytical

results in the formats used by Rosenthal as well as by Urban and Hauser.

Detailed Models of Market Demand

As a Þrst step towards developing a model of competition and diffusion, we turn to

the marketing literature, which provides a rich stream of research related to product

introduction and demand dynamics, speciÞcally in the area of new product diffusion models

(Bass 1969)1. The Bass model leads to the S-shaped product diffusion that has commonly

been reported for new product categories: sales for a new product are initially low, as there

exists limited word-of-mouth for it, and customers only adopt the product in response

to external inßuences (captured by the coefficient of innovation). With more customers

adopting the product, the word-of-mouth effect for the new product becomes stronger and

the sales rate increases (captured by the coefficient of imitation). Finally, the sales rate

starts to decrease, reßecting the overall market saturation.

A model of category level diffusion is important when analyzing the demand dynamics

of two competing products within a category. For example, Krishnan et al. (2000) discuss

how Chrysler introduced the Caravan and the Voyager (brands) back in 1984 and thereby

acted as a pioneer in the minivan (category) market. When a few years later Ford intro-

duced the Aerostar, Ford was able to beneÞt from the category awareness for minivans

and captured a sizable portion of the market. Thus, although the Þrst product to market

obtains 100% of the category sales up to the arrival of the second product, initial sales

can be low given the limited awareness for the new category. We will label this effect as

the category-awareness effect.

Whereas the original models of new product diffusion were applied at the product

category level, the last Þfteen years have witnessed the evolution of a signiÞcant body

of research on diffusion models incorporating the effects of brand competition within a

category (see Chatterjee et al. 1998 for an overview of competitive diffusion models). There

are two effects of brand-level diffusion that are important to consider when modeling the

impact of launch time on demand dynamics, brand-level word-of-mouth and cross-brand

word-of-mouth.

In addition to the word-of-mouth effect at the category level, customers also exchange

information at the brand level. Consider a customer deciding which brand within the

mobile phone category to adopt. A customer who has interacted with a prior adopter of

1We will review Bass�s mathematical model further below. For an overview of the Bass model as well

as its numerous extensions, we refer the reader to Mahajan et al (1990).
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Brand A will not only be more likely to also buy any mobile phone (category-awareness

effect) but will be more (or less) likely to also adopt Brand A. To capture this effect,

Krishnan et al. (2000) extend the traditional Bass model to the brand level and assume

that each brand has its own coefficient of innovation as well as coefficient of imitation.

The coefficient of imitation in the model presented by Krishnan et al. captures the effect

that prior adopters of the category have on the future adopters of a brand as a �...collective

force of all previous adopters that act on each brand�s future adoption (Krishnan et al.

2000, p. 271)�. While lumping the effects of brand-level word-of-mouth together into a

collective force makes the resulting diffusion equations more elegant, it does not separate

between the word-of-mouth for brand A coming from customers who have adopted brand

A vs. customers who have adopted brand B.

However, such a separation can be important, especially when studying the sales loss

of the incumbent as a result of a new market entrant. This observation is in line with

the empirical work by Mahajan et al. (1993), who specify a model of competition and

diffusion, which they use to assess the impact of competitive entry on the incumbent�s

sales. The model speciÞcation for the empirical analysis by Mahajan et al. (1993) not

only includes the word-of-mouth between potential adopters of one brand with previous

adopters from the entire category but explicitly models the �cross brand word-of-mouth� of

both brands separately. The model is used to study the competition between Polaroid and

Kodak and to evaluate Polaroid�s sales loss as a result of Kodak�s patent infringement. As

we share Mahajan et al.�s interest in understanding the impact of competitive entry on the

incumbent�s sales dynamics, we incorporate their concept of �cross brand word-of-mouth�

into our analysis.

Despite the successful use of competitive Bass-type diffusion models empirically, only

three prior articles have presented normative models related to the timing of entry within

a competitive diffusion context (Chatterjee et al. 1998). The three studies are compared

in Table 1, together with the two most relevant empirical studies as well as the present

manuscript. Eliashberg and Jeuland (1986) consider a pioneering brand and a competing

brand introduced at a later point. Their study takes the launch times as exogenous and

focus on pricing decisions. The underlying demand model is characterized by a saturation

effect, but does not include a word-of-mouth effect. Similarly, Fershtman, Mahajan and

Muller (1990) focus on pricing decisions, but also include an advertising decision. Unlike

Eliashberg and Jeuland (1986), their demand model is characterized by a word-of-mouth

effect, but does not include a saturation effect. The only competitive diffusion model with

saturation and word-of-mouth effect is provided by Kalish, Mahajan, and Muller (1995).
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Yet, given that the authors analyze the timing of entry in different global markets, they

do not provide analytical results on how a change in launch time inßuences the lifecycle

sales and proÞtability of the product.

Marketing-Operations Coordination

From the operations perspective, an additional day in development provides the oppor-

tunity to spend more time on Þne-tuning the product and its corresponding manufacturing

process. Bhattacharya et al. (1998) distinguish between extra time that is used towards

improving the product performance of the new product (concept deÞnition) and time that

is used to reduce product unit cost for a given concept (set of features). In our analysis,

we assume that the product concept is frozen and that all additional time will be spent

towards reducing the product�s unit cost. We thereby model the trade-off between launch

time and one out of the three performance dimensions in Figure 1. Extending this analysis

to either include a third dimension, or to include a different second dimension (product

performance or development cost) is interesting, yet beyond the scope of this paper.

From the marketing perspective, an additional day in development will typically not

be welcome. The pool of potential customers is shrinking because of current or future

competition (market saturation effect). Moreover, the product category diffusion will

commence (category level word-of-mouth effect) and the competing product will have

an opportunity to receive more brand-level word of mouth (brand level word-of-mouth

effect). Given these conßicting objectives, a decision maker needs to compare foregone

proÞt margins resulting from a delayed launch with reduced unit costs over the entire

product lifecycle. If engineers improve unit cost corresponding to $500K cost savings for

each extra day while the market is shrinking with a Þnancial impact of $1 million each

day, it is probably time to launch. Thus, a �dollarization� of delay creates a truly cross-

functional performance metric, leading to improved coordination between marketing and

operations.

However, there are situations where attempts of coordinating marketing and operations

based on marginal analysis can lead to overall Pareto-inefficiencies. De Groote (1994)

presents a model in which the operations function chooses an optimal batch size and

a production technology, which is driving the set-up costs per batch, while marketing

chooses the degree of product variety. In this set-up, each of the two functions fully takes

into account its impact on the other function, thus coordination inefficiencies do not arise

from ignorance. However, as their choice is based on a marginal analysis (What is the

degree of variety for the current production technology? What is the optimal production

technology for the current degree of variety?), the Þrm as a whole may forego a global
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performance maximum (higher variety with more ßexible production technology). Other

studies pointing at a need for a more integrated decision making include Schmidt and

Porteus (2000) and Cohen et al. (2000).

3 Model Formulation

Using a model of competitive product diffusion similar to the one underlying the empirical

studies by Krishnan et al. (2000), we consider the competitive diffusion of two products

(1 and 2). At t = 0, the manager responsible for the launch of product 1, is faced

with the decision of when to launch her product, provided that the launch time of the

competing product 2, T2, is known. T2 may be positive or negative, reßecting the fact that

product 2 may yet to be launched or may be launched already. DeÞne the beginning of

the competitive diffusion as tc = max (T2, T1).

We assume that the two competing products jointly constitute a product category and

compete for the same population of potential adopters of sizem. We assume the population

of potential adopters to be independent of the number of products currently on the market,

which allows us to isolate the saturation effect discussed above. Thus, when the second

product enters, the rate of diffusion will change, but not the market potential. Our model

would have to be extended to capture the case that a new product entering the market

not only alters the diffusion rate, but also increases the population of potential adopters

(see Krishnan et al. 2000 for an excellent discussion of these two effects)2.

The competitive new product diffusion process is speciÞed as follows. Sales of prod-

uct i reßect product adoption by three different groups of adopters: �innovators�, who

adopt product i based on an external inßuence, �imitators�, who adopt due to networking

interaction (internal inßuence) with those who already adopted the same product, and

�cross-imitators�, who adopt product i after interacting with those who already adopted

product j. This adoption process is illustrated in Figure 3. For t ≥ tc, denote the cumu-
lative sales function of product i by Di(t), i = 1, 2. The sales rate of product i depends

on the cumulative sales of both products by time t:

dD1
dt

=
µ
p1 +

1

m
(q11D1(t) + q12D2(t))

¶
(m−D1(t)−D2(t)) ,

dD2
dt

=
µ
p2 +

1

m
(q21D1(t) + q22D2(t))

¶
(m−D1(t)−D2(t)) . (1)

2Closed form solutions for our model can still be obtained for that generalized case as long as the

population of potential adopters is a constant m for t < tc and a (different) constant M for t ≥ tc. Note
that this formulation does include the Krishnan et al. (2000) model.
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Diffusion equations (1) represent an extension of the diffusion dynamics in Bass (1969)

and reßect the interaction between the individual diffusions for products 1 and 2 through

both the market saturation effect m − D1(t) − D2(t), as well as through the word-of-
mouth effect. The word-of-mouth effect occurs both at the category level as well as at the

brand level. SpeciÞcally, qij deÞnes the probability that a customer adopts product i after

having interacted with a previous adopter of product j. Mahajan et al. (1993) label this

coefficient - for i 6= j -as the brand competition effect3.
We assume that the sales of the entire product category D(t) = D1(t) + D2(t) follow

the classical Bass pattern. We observe that (3) describes a Bass diffusion only if

q11 + q21 = q12 + q22 = q (2)

where q captures the category level word-of-mouth effect. The assumption of brand level

diffusions jointly constituting a category level diffusion follows the argument by Krishnan

et al. (2000) who convincingly argue: �The property that the proposed brand-level model

sums up to the Bass category-level model may look restrictive, but it gives indirect face

validity to the proposed model because the Bass (1969) model has a strong behavioral

basis and has found excellent empirical support over a wide range of products�.

Adding the two equations in the (1), we obtain:

dD

dt
=
µ
p+

1

m
((q11 + q21)D1(t) + (q12 + q22)D2(t))

¶
(m−D(t)) . (3)

where p = p1 + p2.

DeÞne β = p1
p
as the probability that an �innovative� customer will select product 1,

given that she decided to adopt one of the two products. The coefficient of external

inßuence, p, in a diffusion captures all time-invariant effects on the adoption decision of

the customer. This includes the absolute attractiveness of the product, the awareness of

the product created independent of market share (e.g. media advertising), or the price

position of the new product. Consequently β provides a measure to what extent the

external inßuence of the diffusion favors brand 1 versus brand 2. If β = 0.5, both products

experience the same external inßuence.

Further, deÞne α1 =
q11
q
and α2 =

q22
q
. The αi describe the imitation process for the

respective product brands and can be interpreted as measures of relative attractiveness

for potential adopters. We can then express (1) as

dD1
dt

=
µ
pβ +

q

m
(α1D1(t) + (1− α2)D2(t))

¶
(m−D1(t)−D2(t)) ,

3A similar functional form is also used in models of multi-product diffusion (see Peterson and Mahajan

1978, Bayus et al. 2000)
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dD2
dt

=
µ
p (1− β) + q

m
((1− α1)D1(t) + α2D2(t))

¶
(m−D1(t)−D2(t)) . (4)

We note that the general set of diffusion equations (4) includes two important com-

petitive diffusion regimes as particular cases. On the one hand, when α1, α2 → 0.5, the

competitive diffusion proceeds mainly at the level of the entire category - in this case, the

�imitative� consumers look at each of the competitors as members of a particular category,

rather than individual products. On the other hand, when α1, α2 → 1, the diffusion shifts

to the level of the individual brands.

Similar to prior studies in this Þeld (Bayus et al. (1997), Krishnan et al. (2000),

Mahajan et al. (1993)), our analysis treats the diffusion coefficients pi and qij , and thereby

α1, α2, and β, as exogenously given. Given the extensive body of research on diffusion

models in various industries (e.g. Van den Bulte 2000), it is possible to obtain good

predictions for the corresponding diffusion parameters4. Since the values of the diffusion

parameters can be inßuenced by marketing mix variables, such as advertising and pricing

(see Bass et al. 1994, Bass et al. 2000), using past diffusion parameters to describe the

projected sales of a new product implicitly assumes that the marketing decisions involved

in managing the sales processes of new products will be predictable and similar to those

used in the past. This assumption allows us to isolate the effects of launch time delays on

the life-cycle sales of a new product in a competitive environment5.

Product 1 may be introduced at any time T1 ≥ 0. Let T = T2 − T1 denote the launch
time gap between the two products: T > 0 indicates that product 1 is introduced ahead of

product 2, while T < 0 corresponds to the case when product 2 is introduced Þrst. Note

that, since T1 ≥ 0, T ≤ T2. Since by t = tc ≥ 0 one of the products enjoyed a monopoly
setting, the initial conditions for (1) are

(D1(t = tc), D2(t = tc)) =
³
D1(T ), D2(T )

´
(5)

where

D1(T ) =

 0, T ≤ 0,
m
³
1− pβ+qα1

qα1+pβ exp((pβ+qα1)T )

´
, T > 0,

(6)

D2(T ) =

 m
³
1− p(1−β)+qα2

qα2+p(1−β) exp((p(1−β)+qα2)|T |)
´
, T ≤ 0,

0, T > 0,
(7)

4If the parameters are not known at the beginning of the diffusion, one would have to rely on an

updating mechanism to improve the estimates dynamically (see e.g. Xie et al. 1997).
5See Bass et al. (1994) for an excellent overview on how marketing mix decisions relate to product

diffusion.
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are the cumulative sales of product i prior to competition (Bass 1969). If both sales

processes start simultaneously, T = 0 and (D1(t = tc),D2(t = tc)) = (0, 0). This set-up

assumes that the product Þrst to market will follow a Bass diffusion, which means that

consumers are not anticipating - and potentially delaying - their adoption decision because

of the future launch of the product second to market6.

Our analysis will take the position of a Þrm launching product 1. We are interested

in obtaining expressions for the lifecycle sales M1(T ) = D1 (+∞), and, in particular, in
quantifying the impact of a delayed launch on the lifecycle sales dM1(T )/dT . As we do not

model changes in prices and production costs over the course of the lifecycle, the overall

lifecycle sales also provides a measure of proÞts derived from the new product.

While an extended development time will have negative consequences through reduced

lifecycle sales, such an extension might be warranted if it is connected with operational

improvements. We assume that there exists a constant return to cost reduction effort,

thus unit cost for product 1 can be written as:

c1(T1) = δ0 + δ1e
−γT1 (8)

where δ0, δ1, and γ are all non-negative. In (8), δ0+δ1 denotes the unit cost if product 1 is

launched immediately, while δ0 corresponds to the minimum possible unit cost. γ denotes

the rate with which the development team can reduce cost. As reßected in (8), we assume

that the per unit costs are driven largely by the product design, opposed to experience

effects (learning curves) in the manufacturing facility. This assumption is consistent with

Eliashberg and Jeuland (1986) and Kalish et al. (1995). In contrast, Fershtman et al.

(1990) allow for volume learning, i.e. unit cost falling with cumulative output. None

of the previous studies considers cost reduction opportunities resulting from a delayed

launch.

Denoting by π the average (over the life-cycle period) selling price for product 1, we

can express the proÞt margin of product 1 given launch time T1:

σ (T1) = π − δ0 − δ1e−γT1 = (π − δ0)
³
1− ce−γT1

´
, (9)

where c = δ1
π−δ0 . Here we assume that, irrespective of chosen launch time, the proÞt margin

remains non-negative, so that π > δ0 and 0 ≤ c ≤ 1. Combining our demand model given
by (4) and (5) with the model of cost reduction in (8), we can state the optimization

problem for the Þrm launching product 1 as:

P = max
T≤T2

³
M1(T )

³
1− ceγ(T−T2)

´´
(10)

6See Eliashberg et al. (2002) for how the announcement of a new product impacts the diffusion pattern.
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The optimization model (10) focuses on the optimal response of a team developing a

new product to the market entry of a competitor, which has happened in the past (T2 < 0)

or is expected to happen in the future (T2 > 0). The central part of the analysis of such

optimal response relies on the properties of the lifecycle sales function M1(T ), which we

analyze in the following section.

4 The Impact of Launch Time on Lifecycle Sales

The competitive diffusion described by (1) has one important property (Lemma 1): for

every value of the launch gap T 6= 0, sales of both products can be shown to be equivalent
to those for some synchronous (T = 0) diffusion. DeÞne the remaining market potential

m (T ) for a given launch time T as:

m (T ) = m−
2X
i=1

Di(T ). (11)

Moreover, deÞne the �launch time adjusted� coefficients of innovation and imitation as:

pi (T ) = pi +
2X
j=1

qij
m
Dj(T ), ∀i = 1, 2, (12)

qij(T ) =
qij
m
m (T ) , i, j = 1, 2 (13)

The sales of the competing products can be expressed as follows:

Lemma 1: Denote p = (p1, p2) and q = (q11, q12, q21, q22). Also, for T 6= 0, denote by
Di(t, T,p,q,m), i = 1, 2 the solution to (1) subject to initial conditions (5), t ≥ tc. Then,

Di(t, T,p,q,m) = Di(t− tc, 0,p(T ),q(T ),m(T )) +Di(T ), i = 1, 2, t ≥ tc (14)

Lemma 1 stipulates that the diffusion patterns for two products entering the market at

different points in time can be reduced to diffusion patterns with a simultaneous market

entry. The transformation (14) is intuitive. The market size for the phase with both

products on the market needs to be reduced to account for the sales that the pioneer-

ing product could realize before the beginning of competition. Moreover, the customers

who have adopted the pioneering product will create and additional external inßuence

on consumers for the pioneering product, which increases the corresponding coefficient of

innovation.

Based on the deÞnitions (11)-(13), we can make two interesting observations. First,

unlike Kalish et al. (1995), our demand dynamics of the overall category diffusion are
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still consistent with the traditional Bass dynamics as outlined in Bass (1969). Second,

while the transformations (11)-(13) change both the market size and the imitation pa-

rameters, the imitation and cross-imitation components of the diffusion dynamics
qij(T )

m(T )

remain unchanged.

Using the �launch gap� transformations introduced above, we can establish the sales

trajectories of the competing products as well as their lifecycle sales for any combination

of the launch gap and the diffusion parameters. Towards this goal, deÞne D(T ) = D1(T )+

D2(T ) using the transformation deÞned by (6) and (7).

Theorem 1

(a) Let D (t) = m
³
1− q+p

q+p exp((p+q)t)

´
denote the cumulative sales for the entire product

category at time t. Then, if there is a market entry gap between two products T = T2−T1,
the cumulative sales of competing brands are given by

D1(t) =



µ
D1(T )− (1−α2)D(T )

2−α1−α2 + pm
q(α1+α2−1)

³
β − (1−α2)

(2−α1−α2)
´¶Ã 1+

qD(t)
pm

1+
qD(T )
pm

!α1+α2−1
+ (1−α2)
(2−α1−α2)D(t)− pm

q(α1+α2−1)
³
β − (1−α2)

(2−α1−α2)
´
,

α1 + α2 6= 1,α1 + α2 < 2,
D1(T ) + α1

³
D(t)−D(T )

´
+ pm(β−α1)

q
log

Ã
1+

qD(t)
pm

1+
qD(T )
pm

!
,

α1 + α2 = 1,
(pβ+ q

m
D1(T ))D(t)+p(D1(T )−βD(T ))

p+ q
m
D(T )

,α1 + α2 = 2,

D2(t) = D(t)−D1(t), (15)

(b) For any T , the lifecycle sales for product 1, M1(T ), are given by:

M1(T ) =



µ
D1(T )− (1−α2)D(T )

2−α1−α2 + pm
q(α1+α2−1)

³
β − (1−α2)

(2−α1−α2)
´¶Ã 1+ q

p

1+
qD(T )
pm

!α1+α2−1
+ (1−α2)
(2−α1−α2)m− pm

q(α1+α2−1)
³
β − (1−α2)

(2−α1−α2)
´
,

α1 + α2 6= 1,α1 + α2 < 2,
D1(T ) + α1

³
m−D(T )

´
+ pm(β−α1)

q
log

Ã
1+ q

p

1+
qD(T )
pm

!
,

α1 + α2 = 1,
(pβ+ q

m
D1(T ))m+p(D1(T )−βD(T ))

p+ q
m
D(T )

,α1 + α2 = 2,

(16)

The above result speciÞes the cumulative sales of each of the competing products at

any point in time as well as the values of the lifecycle sales acquired at the end of the

competitive diffusion period. We observe that while the sales dynamics of the entire

category follows the Bass pattern, the individual product sales can be very different from
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it. Figures 4 and 5 show how the demand rate for competitor 1 is inßuenced by the market

entry time of the competitor 2 for the cases when the competitive diffusion proceeds on

the level of the entire product category (α1 = α2 = 0.5, Figure 4) or, almost entirely, on

the brand level (α1 = α2 = 0.9, Figure 5).

Figure 4 indicates that while the position of the demand peak for competitor 1 is pushed

into the future as the entrance of the competitor 2 is delayed, the height of this demand

peak is not inßuenced by the competitor�s entry time unless the competitor is starting

very far ahead. This last feature is a direct consequence of the �category� nature of the

competitive diffusion process. Note that the competitor�s entry creates a kink in the sales

curve most visible for the curves corresponding to T=10 and T=20. Figure 5 demonstrates

that for the �brand level� diffusion both the position of the demand peak and its height

are, as expected, monotone functions of competitor�s entry time.

The closed-form expressions (16) for lifecycle sales are of fundamental importance for

our analysis of the impact of launch time on lifecycle sales. This impact can be quantiÞed

by evaluating monotonicity and curvature of lifecycle sales as a function of launch time T .

Theorem 2 captures these properties.

Theorem 2

(a) Lifecycle sales for product 1, M1(T ), increases with relative product attractiveness,

α1, and the value of external inßuence, β. M1(T ) decreases with launch delay T and the

relative attractiveness of the competing product, α2.

(b) For any 0 < α1,β < 1, there exists a launch delay value Tmax such that M1(T )

is a concave function of T for T ≥ Tmax. In addition, there exists a launch delay value

Tmin < Tmax such that M1(T ) is a convex (concave) function of T for 0 ≤ T ≤ Tmin

provided that p
q
< (>)α1

β
+ 1−α1

1−β − α1 − α2.
As expected, lifecycle sales of product 1 decrease with its launch delay. A similar effect

is observed when the relative attractiveness of the product, as measured by the ratio of

its α coefficient to that one of the competing product, increases. Increases in the strength

of the external inßuence, β, will also lead to an increase in product�s lifecycle sales.

Part (b) of Theorem 2 states the properties for the lifecycle sales of product 1 for

the case when it is introduced ahead of product 2. The analogous statements for the

case when product 2 is introduced Þrst, are easily obtained by interchanging α1 and α2

as well as β and 1 − β in the above expressions and using the �conservation� condition
M1(T ) +M2(T ) = m.

We observe that lifecycle sales of product 1 as a function of its launch delay can exhibit
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a �non-concave� behavior. In other words, the marginal impact of a launch delay does

not have to be monotone. Such non-concavities are of importance for the structure of the

optimization problem (10) and will strongly impact the marketing-operations coordination

analyzed in the following section. This may happen, in particular, in cases when competing

products with similar relative attractiveness levels are subject to very dissimilar external

inßuences, or similar external inßuences exist for products with very different relative

attractiveness levels. For example, in the case of α1 = α2 = 0.8, β = 0.7 (�attractive�

products, external inßuence for product 1 heavily dominates that of product 2) the �non-

concavity� occurs for p
q
< 0.21 - a condition which is satisÞed for the vast majority of

products (for example, the average estimated p
q
ratio for the new durable products in

the seminal Bass (1969) paper is around 0.05). Similarly, in the case when β = 0.5 and

α1 = 0.7, α2 = 0.2 (equal external inßuence in the situation when product 1 is relatively

more attractive than product 2) the �non-concavity� condition of Theorem 2, p
q
< 1.1, is

clearly satisÞed.

Theorems 1 and 2 enable us to address the questions that we raised in our discussion

of Figure 2 by analyzing the impact of different diffusion parameters and entry times

on the product�s lifecycle sales. The following analysis uses parameter ranges based on

the category diffusion as estimated by Bass (1969). SpeciÞcally, we assume a coefficient

of innovation p = 0.0163221, a coefficient of imitation of q = 0.325044, and a market

potential of m = 41, 298, 400. Moreover, in order to isolate the effect of launch time, we

assume that both products are subject to the same degree of external inßuence (β = 0.5).

Figure 6 plots the marginal loss in lifecycle sales as a function of the launch delay T .

Consider Þrst the case where the word-of-mouth predominantly occurs at the brand level

(α1 and α2 are both fairly large, here chosen as α1 = α2 = 0.9). At T = 0, a one unit

acceleration in launch time will lead to a 0.08 increase in lifecycle sales. The beneÞt of

an early launch is not only the market-saturation effect, but it is also one of creating a

customer base which will lead to an increase in future sales rates as a result of positive

word-of-mouth at the brand-level. However, as can be seen by moving from the origin

to the left, further acceleration exhibits diminishing returns. This is consistent with the

argument by Urban and Hauser (moving from zero to the left). Moreover, as was argued

by Kalyanaram and Krishnan, the maximum loss occurs indeed when both competitors

are launching head to head (T = 0).

If we move the word-of-mouth effect from the brand-level to the category level (α1 =

α2 = 0.7 and α1 = α2 = 0.3), something interesting happens. The single peak of Figure 6

breaks up into two symmetric peaks, one of each side of the origin (T = 0). These peaks
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�drift apart� with a further reduction in αi. This reßects the now weaker word-of-mouth

effect of the brand. New customers adopt the category, but do so without considering

which brand has currently the larger installed base. Thus, customers think of the product

they purchase as the category (minivan) opposed to the brand (Caravan, Aero). This

substantially weakens the position of the incumbent compared to the case with high αi.

Figure 6 shows that - although any acceleration in product launch is beneÞcial (dMi

dT
> 0)

- such beneÞts do not necessarily exhibit diminishing returns. Especially for low values

of αi, we observe two maxima in Figure 6, thus
d2Mi

d2T 2
can be positive or negative. Hence,

in a case where consumers think of a product as a member of a category, opposed to a

unique brand, a development team facing head-to-head competition concerning market

entry time (T = 0) looses fewer units of lifecycle sales per unit launch delay than one

would intuitively expect. An application of marginal trade-off rules when coordinating

with the operations decision on how much time should be spent on unit cost reduction is

thereby likely to lead to a local, sub-optimal maximum.

Figure 7 analyzes the cost of delay for varying levels of word-of-mouth, q, for the

overall product category. For the same external inßuence, higher levels of word-of-mouth

are associated with a faster product diffusion. As indicated by Figure 7, a one time-unit

delay at T = 0 in the case of q = 0.325 corresponds to a roughly 3% loss in lifecycle sales.

For q = 0.625, in contrast, this loss increases to well over 5% loss in lifecycle sales per unit

of delay-time.

Figures 6 and 7 have considered two products of equal desirability (α1 = α2). Figure 8,

in contrast, considers the case where product 1 is more desirable than product 2 (in this

case α1 = 0.8; α2 = 0.6). We observe that the symmetry from Figures 6 and 7 is replaced

by an asymmetric �double-hump�, as described by Wheelwright and Clark. This has the

following implications. If product 1 would be able to accelerate its development process,

it would introduce a strong product as the Þrst entrant, which would be rewarded with

substantial gains in lifecycle sales (up to a 3% gain in lifecycle sales per unit acceleration).

On the other hand, given the attractiveness of product 1, product 1 can afford a delayed

entry. Even in presence of a relatively large installed base of product 2, a large number

of residual potential adopters would still purchase product 1 (q12 is large). However, for

large values of launch delays of product 1, the market saturation effect becomes dominant,

and even a superior product is facing limited market potential. The case of different levels

of product attractiveness provides an interesting extension opportunity for the model

presented above. While in our model, the development team spends additional time on

cost reduction effort, one could develop an alternative model in which a team used extra
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development time to increase the product�s relative attractiveness.

In summary, our formal model is able to explain some of the apparent inconsistencies

that exist in the prior literature as displayed in Figure 2. Previous results were not �right�

or �wrong�, they were simply under-speciÞed, thereby making latent assumptions about

the underlying levels of product attractiveness (low vs. high levels of α1 and α2) and

diffusion dynamics (word of mouth at the brand vs. at the category level).

5 Optimal Time-to-Market Responses

Now, consider a development team which faces the following trade-offs. From the market

side, an additional week delaying the product launch would lead to a loss of $150K resulting

from foregone revenue margins. At the same time, an additional week delaying the product

launch would allow for further effort in DFM activity, leading to a $100K savings in

manufacturing costs. Is it time to launch? The costs of delay seem to outweigh the

beneÞts. However, such a marginal analysis can be misleading, as - due to non-concavities

in the underlying objective function - multiple local optima can exist. This requires a more

detailed analysis of the optimal launch time decision, which is presented in the following

Theorem.

Theorem 3 (a) The optimal launch gap T ∗ is a non-decreasing function of T2 and α2,

and a non-increasing function of c. Also, there exists γ∗ such that T ∗ is a non-increasing

(non-decreasing) function of γ for γ < γ∗ (γ > γ∗).

(b) Let α1+α2 6= 1,α1+α2 < 2. For given p, q, α1, β and T2, deÞne bT = 1
pβ+qα1

log
³
qα1
pβ

´
as the time of the peak demand in product 1 monopoly diffusion and

h∗ =


p2β(1−β)
(p+q)

, T2 < 2 bT,
p2β(1−β)
(p+q)

(pβ+qα1)
2e(pβ+qα1)T2

(qα1+pβe(pβ+qα1)T2)
2 , T2 ≥ 2 bT , (17)

Then, an immediate launch of product 1 is optimal provided that cγ
1−c < h

∗.

The statement of Theorem 3 identiÞes the sensitivity properties of the optimal launch

gap for a given entry time of the competing product. In particular, part (a) of Theorem

3 states that as the expected time of product 2�s entry is pushed into the future, it is

optimal for brand 1 to respond by increasing the gap T ∗ between launches of competing

brands.

While this increase in the launch gap is intuitive, surprisingly, a delay of product 2�s

launch can drive the optimal launch date for product 1 forward in time. For example,
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consider the case where product 2 is to be launched at time 10 and product 1 at time

2 (the launch gap is 8). Now, product 2 announces a delay in launch, say to time 12.

Depending on the parameters of the problem, it may be optimal for product 1 to respond

by moving its launch forward in time (e.g. to launch at time 1), which would lead to a

launch gap of 11, or, by moving its launch backward in time (e.g. to launch at time 3),

which would lead to a launch gap of 9. Thus, in both cases, the launch gap is increased,

yet the actual launch date for product 1 could go either way.

An illustration of this phenomena is presented in Figure 9: we observe that as the launch

time of product 2 increases, the optimal response for product 1 changes discontinuously

at bT2 = 19.5 from an increasing to a decreasing function. Such discontinuity is a direct

consequence of the non-concavity of the product 1 lifecycle sales function M1(T ) and

occurs when the proÞt function P has two competing local maxima, so that one of them

is preferred for T2 < bT2 and the other one for T2 > bT2. In particular, for T2 < bT2, it is
optimal to launch product 1 after product 2, and the optimal launch time for product 1 is

an increasing function of T2. For T2 > bT2, the optimal market launch response of product
1 changes drastically - it is now optimal to launch product 1 before product 2, and the

launch time for product 1 is pushed forward as the launch of a competitor is delayed.

The optimal launch gap is decreasing in the cost parameter c. In other words, the better

the cost position of product 1, the more will it beneÞt from achieving a high level of lifecycle

sales (Figure 10a). A decrease in the relative attractiveness of product 2, α2, leads to a later

launch for product 1. The intuition behind this result is that the decreased attractiveness

of product 2 allows product 1 to spend extra time on cost reduction without incurring

signiÞcant lifecycle losses (Figure 10b). Figure 10b shows an example of a discontinuous

change in T ∗ at α∗2 = 0.56. Just like in the example of Figure 7, such discontinuity reßects

an existence of two local maxima in the proÞt function, with one of them being preferred

for α2 < α
∗
2 and the other for α2 > α

∗
2. In the example shown in Figure 10b the optimal

response for product 1 at α2 = α
∗
2 exhibits a fundamental change: from launching 6 units

of time behind product 2 to launching 10 units ahead. Again, this is a direct result of the

non-concavity of lifecycle sales with respect to the launch gap T .

Theorem 3 identiÞes a non-monotone response of the optimal launch gap to changes

in the speed of cost reduction γ. We illustrate this behavior in Figure 11. For small

values of γ, the return to a delay in terms of unit cost reduction is low, thus, the Þrm will

favor a quick launch. In the other extreme, if γ is large, i.e. cost reductions are achieved

extremely rapidly, not much of a delay is needed. Even a small delay is sufficient to achieve

a good cost position. In-between (γ = 0.2 in Figure 11), the delay will be at a maximum,
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represented by a minimum launch gap.

Part b of Theorem 3 states sufficient conditions for the optimality of an immediate

launch of product 1 for the most general case of α1 + α2 6= 1,α1 + α2 < 2 (similar

statements can be obtained for the cases of α1 + α2 = 1 and α1 + α2 = 2). Parameter h
∗

describes the effective rate of sales loss for product 1 in a competitive environment in the

case when the market introduction of product 1 is delayed. In Theorem 3, the analysis of

the cost-sales trade-off is reduced to a simple comparison between h∗ and the effective rate

of production cost reduction cγ
1−c . In particular, the statement of the Theorem quantiÞes

the range of values for the rate of process improvement γ or potential cost reduction c for

which delays in market introduction of a new product are not warranted.

(17) indicates that, as expected, the effective rate of sales loss h∗ is a decreasing function

of the competitor�s market entry time T2. If the competitor (product 2) has already

entered the market or is planning to enter in not-too-distant future (sooner than 2 bT ), the
immediate market entry for product 1 is imperative under innovation-driven category-level

demand processes (high values of p and low values of q). This conclusion is intuitively

appealing, since innovation-driven demand processes are �faster� than imitation-driven

ones, characterized by low values of p and high values of q: they start at higher sales

rates, reach sales peaks sooner and �die out� faster. If the competitor�s market entry is

expected in a distant future (later than 2 bT ), the optimality of the immediate launch for
the same values of category diffusion parameters is no longer assured: as the expected

competitor�s entry is shifted into the future, there is an increasing incentive to delay the

launch of product 1 and beneÞt from the production cost savings. The sufficient conditions

of Theorem 3 are quite general in that they guarantee the optimality of the immediate

launch of product 1 irrespective of the attractiveness level of the competing product 2.

6 Competitive Market Entry Decisions

The analysis of Section 5 focuses on a company�s optimal response for a given market

entry of a competitor. While such analysis may be valid in the settings when competition

has already made its move (T2 < 0) or is committed to a certain launch time in the future,

an equilibrium analysis of the market entry decisions is generally more desirable. In this

Section we consider a setting in which at t = 0 neither of the competitors have entered the

market. Following the notation deÞned in Section 3, we can express the proÞt functions

of the two competitors as

Π1 (T1, T2) = M1(T2 − T1)
³
1− c1e−γ1T1

´
, (18)
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Π2 (T1, T2) = (m−M1(T2 − T1))
³
1− c2e−γ2T2

´
. (19)

where we have introduced the cost parameters for the second competitor, c2 and γ2. Our

objective is to characterize a Nash equilibrium in market entry times. In equilibrium, each

competitor will choose its market entry time as the best possible response to the market

entry time of its competitor. Thus, (T ∗1 , T
∗
2 ) are an equilibrium if:

T ∗1 = argmax
T1≥0

(Π1 (T1, T
∗
2 )) , (20)

T ∗2 = argmax
T2≥0

(Π2 (T
∗
1 , T2)) . (21)

The complex structure of the lifecycle sales function M1(T ) complicates the equilibrium

analysis substantially, both with respect to establishing existence and uniqueness of the

solution to (20)-(21). However, a set of general results characterizing T ∗1 and T
∗
2 can still

be obtained as outlined below.

We Þrst provide a partial characterization of the �entry� Nash equilibrium in the sym-

metric case of α1 = α2 = α, β = 0.5, c1 = c2 = c, γ1 = γ2 = γ. For 0.5 < α < 1,

deÞne

c∗ =
p
2

³
1 + q

p

´2α−1
γ + p

2

³
1 + q

p

´2α−1 , (22)

B(c) = 1− qα+ p
2

qα+ p
2

³
c
c∗

´ qα+ p
2

γ

, (23)

and

L(c∗) =

c > c∗| (1− c)
1 + (B (c))

 1 + q
p

1 + q
p
− q

p
B (c)

2α−1
 > 1− c∗

 . (24)

Then, we can establish the following properties of the entry-times Nash-equilibrium:

Theorem 4a (Symmetric products)

a) For c ≤ c∗, there exists a pure strategy symmetric equilibrium in which both Þrms

favor an immediate launch, i.e. T ∗1 = T
∗
2 = 0.

b) For c ∈ L (c∗), there exists no solution to (20) and (21), and thus there exists no pure
strategy equilibrium.

The Þrst result of Theorem 4a implies that the identical products enter the market si-

multaneously as long as the value of the potential cost gains associated with launch delays

is low. It is interesting to note that the maximum value of the cost gains assuring the im-

mediate launch is a �rapidly� increasing function of α. In particular, when the competitive
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diffusion shifts to the category level (α → 0.5), c∗ approaches p
2γ+p

. On the other hand,

when the diffusion �shifts� to the brand level (α→ 1), c∗ approaches, q
2γ+q

- a potentially

much higher value (assuming that the rate of cost improvements γ is not too low).

The second result of Theorem 4a indicates that even for the symmetric case a Nash

equilibrium in pure strategies is not guaranteed to exist. We could not provide a concise

characterization of the entire region in which c is greater than c∗. However, we could

establish that the pure strategy Nash equilibrium certainly does not exist for some c

exceeding c∗, in particular those in the interval L (c∗).

In the absence of pure strategy equilibria, mixed strategy equilibria that involve ran-

domized strategies could still exist. Although it seems difficult to imagine companies

randomizing over such important decisions such as launch times, several points are worth

noting. The Þrst relates to the structure of the best response function, which is illustrated

by Figure 12. The horizontal axis shows the entry time of the competitor and the ver-

tical axis shows the corresponding best response. Given that the competitor launches at

relatively early time T , a development team prefers to respond with a launch at Tr > T .

Launching after the competitor allows the team to beneÞt from lower unit costs while also

�free-riding� on the category diffusion set forth by the competitor.

Interpreting the concept of Nash equilibrium as an iterative application of best response

functions, we end up in a scenario, where both players iteratively - at least initially - it-

eratively delay their launch7. However, we observe that for every unit of delay of the

competitor�s launch, the development team delays its own launch only by about 0.5 time

units. This can be seen in Figure 12 by comparing the initial part of the best response

function with the identity line. Thus, the process of waiting for the other party to launch

does not continue indeÞnitely: once the hypothetical launch time has been delayed suf-

Þciently into the future, the best response time of the development team �jumps back�,

favoring a much earlier launch. In Figure 12, we observe that at T = 16, the response

jumps forward discontinuously. Such jump occurs close to the point where the potential

pure strategy equilibrium could be realized, preventing such equilibrium from occurring

(the best response functions never cross). In absence of pure strategy equilibria, the conti-

nuity of our pay-off function directly implies the existence of a mixed strategy equilibrium

(Gliksberg 1952, Dasgupta and Maskin 1986).

Second, as observed by Harsanyi (1973), mixed strategies do not have to be interpreted

as randomizations in the sense of tossing coins, but could capture (un-modeled) private

7Note that - of course - strictly speaking there exists no iterative adjustment in a simultaneous game.

The word �iterative� here is meant to illustrate the nature of the Nash equilibrium concept.
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information in the game (see also Vives 1999). The existence of private information is

plausible in the case of the launch time decisions, as players are unlikely to be fully

informed about the detailed decision situation of each other.

Third, mixed strategy equilibria are rather common in models of economics and market-

ing. For example, the reader might think of the launch time decision of a Þrm as a location

problem in a differentiated market. The optimal location of a store in a non-uniform mar-

ket depends upon the location of competing stores, and previous research has pointed to

the importance of mixed strategies in such games (Anderson et al. 1992). Similarly, Raju

et al. (1990) point to mixed strategies concerning the timing of price promotions.

We now turn to the case of �asymmetric� products, which is obviously more complicated

to analyze. Some general characterization of the �entry� Nash equilibrium however can still

be obtained. Note that if the solution to (20)-(21) exists, then T ∗1 is one of the local maxima

of Π1 (T1, T
∗
2 ) and T

∗
2 is one of the local maxima of Π2 (T

∗
1 , T2). Below we denote �matching�

pairs of local maxima of Π1 and Π2 as T
l
1 and T

l
2: T

l
1 is a local maximum of Π1

³
T1, T

l
2

´
and T l2 is a local maximum of Π1

³
T l1, T2

´
. The following result provides a characterization

of the properties of local maxima of the competitors� proÞt functions:

Theorem 4b (non-symmetric products)

i) Let α1 + α2 6= 1, α1 + α2 < 2 and deÞne

θ1 =
pβ

³
1 + q

p

´α1+α2−1
(1− β)

1−α2
2−α1−α2 +

p
q(α1+α2−1)

³
β − 1−α2

2−α1−α2
´µ³

1 + q
p

´α1+α2−1 − 1¶ , (25)

θ2 =
pβ
³
1 + q

p

´α1+α2−1
(1− β)

1−α1
2−α1−α2 −

p
q(α1+α2−1)

³
β − 1−α2

2−α1−α2
´ µ³

1 + q
p

´α1+α2−1 − 1¶ . (26)

Then, T l1 = T
l
2 = 0 ⇔ ciγi

1−ci ≤ θi, i = 1, 2.
ii) Let

bT1 =

Ã
−T |T ≤ 0, 1

M1

dM1

dT
=

c1γ1e
γ1T

1− c1eγ1T ,
d2M1

dT 2
1− c1eγ1T
1 + c1eγ1T

≤ γ1dM1

dT

!
, (27)

bT2 =

Ã
T |T ≥ 0, 1

m−M1

dM1

dT
=

c2γ2e
−γ2T

1− c2e−γ2T ,−
d2M1

dT 2
1− c2e−γ2T
1 + c2e−γ2T

≤ γ2dM1

dT

!
. (28)

Then, T l1 = 0, T l2 =
bT2 ⇔ c1γ1

1−c1 ≤ 1

M1(bT2) dM1

dT

³ bT2´. Also, T l1 = bT1, T l2 = 0 ⇔ c2γ2
1−c2 ≤

1

m−M1(bT1) dM1

dT

³ bT1´.
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iii) Let

bT =

T |T = log

Ã 1
c1

1
M1

dM1
dT

γ1+
1
M1

dM1
dT

! 1
γ1

Ã
1
c2

1
m−M1

dM1
dT

γ2+
1

m−M1

dM1
dT

!− 1
γ2

 ,
−dM1

dT

µ
γ2 +

2
dM1
dT

m−M1

¶
≤ d2M1

dT 2
≤ dM1

dT

µ
γ1 +

2
dM1
dT

M1

¶
 , (29)

Then,

T l1 = − 1
γ1
log


1
c1

1

M1(bT) dM1

dT

³ bT´
γ1 +

1

M1(bT) dM1

dT

³ bT´
 , (30)

T l2 = − 1
γ2
log


1
c2

1

m−M1(bT) dM1

dT

³ bT´
γ2 +

1

m−M1(bT) dM1

dT

³ bT´
 . (31)

While the statements of part i) of Theorem 4b relate to the most general case of

α1 + α2 6= 1, α1 + α2 < 2, similar statements for any other combination of diffusion

parameters can be easily obtained.

Several comments are due with respect to this Theorem. First, as indicated by Theorem

4a, the existence of the solutions to (27), (28) or (29) in the case of c1γ1
1−c1 > θ1 or

c2γ2
1−c2 > θ2

is not guaranteed. Second, the non-concavity of the lifecycle sales M1(T ) implies that the

uniqueness of the solutions to (27), (28) or (29), if they exist, is also not guaranteed. The

complex nature of the interaction between competitors in the diffusion model (4) requires

an evaluation of all possibilities outlined in parts i)-iii) of Theorem 4b for a given set of

problem parameters.

In order to illustrate the various cases of Theorem 4b, we conducted a numerical study

for the case of two symmetric products with different cost structures (Table 2) as well as

two different products with symmetric cost structures (Table 3).

The results in Table 2 suggest that a pure strategy equilibrium is more likely to exist if

the competitive diffusion occurs primarily at the brand level (α1 = α2 = 0.9) as opposed to

the category level. In this case, a completely symmetric set-up will lead to an immediate

launch of both competitors. This is consistent with the results of Theorem 4a. Note

that the potential cost improvement parameter c = 0.1 is less than the critical value

c∗ =
p
2 (1+

q
p)

2α−1

γ+ p
2(1+

q
p)

2α−1 = 0.48.

For higher values of the innovation parameter, there exists a competitive advantage

for one of the competitors. In this case, it becomes beneÞcial to �trade� this additional

advantage and capture some of the potential cost improvements by delaying launch. We

further note that as the diffusion shifts to the category level (α1 = α2 = 0.55), the pure
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strategy equilibrium becomes impossible to achieve. A similar situation occurs in the

case of non-symmetric competing products (α1 = 0.9,α2 = 0.55) unless the products are

balanced on the innovation scale. This observation is in agreement with the result of part

(i) of Theorem 4b: for the data parameters we consider, setting β to 0.5 allows the values

of θ1 and θ2 to exceed the respective cost parameter combinations, forcing the competitors

to focus exclusively on the market share side of their respective proÞt functions and,

therefore, to launch immediately.

Similar to Table 2, Table 3 illustrates the basic trade-off between potential cost improve-

ments and losses of sales. However, now we focus on the effect of the cost parameters,

for a given set of diffusion characteristics, namely the one where consumers purchase at

the brand level (α1 = α2 = 0.9). Pure equilibria exist for a wide range of cost parameters.

When the potential cost savings are equally high for both products and can be achieved

equally fast (c1 = c2 = 0.5, γ1 = γ2 = 0.1), the pure strategy equilibrium will lead to

delayed launches for both players. In this case, both products are delayed by the same

amount of time (T ∗1 = T ∗2 = 0.399). As cost savings for the second competitor become

harder to realize (c1 = c2 = 0.5, γ1 = 0.1, γ2 = 0.001), the equilibrium shifts to an imme-

diate launch of player 2. In contrast, player 1 prefers to slightly delay its launch, leading

to a better cost position (T ∗1 = 0.252, T
∗
2 = 0).

7 Practical Implications

Based on our results analyzing the impact of launch time on a new product�s demand

dynamics, we can now revisit the question of �What is the Þnancial impact of a change in

launch time on the total proÞts over the product�s lifecycle?�. Recall that such a �dollar-

ization� of changes in launch time allows a development team to trade-off the four product

development performance measures depicted in Figure 1. In this section we identify three

ways our results can be used to improve the decision making of a development team.

Shape of proÞt (launch time) function

Consider a project team developing a new product, which is planned to launch in August

2003. Holding everything else constant, the team will almost certainly prefer to have the

product ready to launch in June 2003. In other words, sales and - holding everything

else constant - proÞts, are increasing with acceleration. While this monotonic effect of

acceleration on proÞts is rather straightforward, the second derivative of this effect is much

harder to grasp. Common wisdom, as summarized for example in the graph by Urban

and Hauser (see Figure 2) suggests that there exist diminishing returns to acceleration. In
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the above example, this implies that the Þnancial gains of moving the launch time from

August 2003 to June 2003 would be larger than the additional gains of moving the launch

time from June 2003 to April 2003.

Our results analyzing the impact of launch time on a new product�s demand dynamics

allow us to analyze the second derivative of this effect explicitly. Consider Figure 13, which

plots the impact of acceleration on revenue. Similar to the Urban and Hauser Figure, the

horizontal axis shows various levels of speed (40− T1). A fast launch corresponds to high
values on the horizontal axis. The vertical axis plots revenues for product 1, which we

Þnd - not surprisingly - to be increasing with speed. Consider the case where the diffusion

occurs primarily at the brand level (high values of αi). In this case, returns to acceleration

are - although steep - diminishing. Note further that this effect is most pronounced at

the point of simultaneous market entry, consistent with the statements we reviewed from

Wheelwright and Clark above. In contrast, we observe that for products that diffuse

primarily at the category level (α1 = α2 = 0.5), this pattern changes fundamentally. The

reason for this is that returns to acceleration are high, if one product is ahead of the other

for a sufficient period of time to capture a signiÞcant part of the market potential m prior

to entry of the follower. If both Þrms are competing head-to-head, no Þrm will be able to

attract a signiÞcant portion of the market prior to the entry of the follower, which leads

to a point of no sales increase in the graph in Figure 13.

Second, consider again the situation of a development team working towards a planned

launch in August 2003. In January 2003, the development team learns that the other

Þrm pursuing development for a similar product experiences a set-back and will suffer a

three-months delay. How should the development team respond? Intuitively, one would

say that the competitor�s delay eases the time pressure on the team and that some of

this �gain� should be allocated to the other performance measures unit cost, development

budget, and design quality. This corresponds to a (slight) delay in launch. However, as

we showed in Figure 9, a delay in the competitor�s launch time might actually move the

optimal launch time forward, even if it comes at the expense of higher unit costs.

Quantitative Results

In addition to providing qualitative insights, our results can be used for an accurate

quantiÞcation of the change in proÞts as well as the change in sales trajectory that come

from a change in launch time. The closed form solutions provided by (15) and (16)

can easily be imported to a spread-sheet model which enables the development team to

evaluate and compare multiple launch time scenarios. This is directly compatible with

the four step procedure proposed by Ulrich and Eppinger. An example of this is given in
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Figure 14, which shows - for a given set of demand parameters - three sales trajectories

corresponding to three different launch time scenarios. Observe that the Figure is similar

to the one proposed by Rosenthal, the horizontal axis captures time while the vertical axis

indicates per period revenues.

Now that we have a coherent model of demand dynamics, we can also analyze other

scenarios not considered by Rosenthal, including the case when the competitor�s product

has already been launched and the case where products differ in terms of their desirability.

For example, Figure 14a shows that product 1 can continue its increase in sales beyond

the entry of product 2, as product 1 beneÞts from its strong word-of-mouth at the brand

level (α1 = 0.9).

We also observe that as long as the word-of-mouth happens primarily at the brand

level, the market leader is only moderately impacted by the beginning of the competitive

period. Figure 14b shows an example in which the pioneering product is of lower quality.

The moment the second product enters, its sales start to drop, which is consistent with

Rosenthal�s prediction.

Structural Result: Applicability of trade-off rules

While the previous two improvements enable development teams to more accurately

understand the Þnancial consequences of a changed launch time, leading to reÞned trade-

off rules, the third improvement questions the usage of trade-off rules per-se. Again,

consider a development team working towards a planned launch in August 2003. The

team debates if the launch should be delayed to October 2003. The extra two months

would reduce product unit costs, which - over the product lifecycle - accumulates to a

saving of $500k. At the same time, the delay would reduce lifecycle sales by $1 million.

Note that these numbers already assume that the development correctly calculates the

impact an October 2003 launch would have on the sales trajectory. Should the launch be

delayed?

Under the assumption of diminishing returns to acceleration (e.g. Urban and Hauser),

the answer is a profound �No�. As long as the second derivatives as depicted in Figure 13

are �well-behaved�, a marginal analysis of proÞts leads the development team to the proÞt

optimal launch time. However, given the more complicated curvature established in this

paper, a development team might end-up in a local proÞt maximum, not realizing that

higher proÞts are obtainable if the launch is altered more substantially. An example of

this is provided by Figure 15, which shows a locally optimal solution at T1 = 12 and a

second point with zero derivative at T1 = 24.

The Þrst local optimum captures the point in which product 1 enters the market Þrst.
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Delaying market entry further shortens the period product 1 is alone on the market,

accelerating (launching before 12) would increase unit costs even further. The second

local optimum corresponds to the case where product 1 is a low-cost follower. The local

optimality of this point reßects that a further delay of entry would leave product 1 with

a sufficiently long monopoly period to capture most of the market. On the other hand,

launching earlier would increase unit costs. We observe based on Figure 15 that the

proÞtability of the second optimum decreases with the attractiveness of the competing

product.

The existence of several competing local optima is especially important given the cross-

functional nature of product development. Product development decisions typically need

to balance the views of various organizational groups involved in the project. In our

example above, the marketing representatives on the development team might advocate

an accelerated launch of April 2003. In contrast, the engineering representative might

request a delay to October 2003. A project manager attempting to Þnd a reasonable

compromise between these different proposals is likely to choose some launch time in

between, which - in light of Figure 15 (the one with the two proÞt maxima) - might not

be a good choice.

8 Discussion and Conclusion

We have started this manuscript with the question �what is the cost of a one day launch

delay?� The literature contains a rather diverse set of qualitative approaches to this

problem. While all approaches seem �intuitively correct�, a scientiÞc debate on which one

of them is appropriate for a given managerial situation is impossible without an explicit

list of underlying assumptions. Especially, the question of how a delayed launch affects

the demand dynamics of the new product is hard to answer without specifying a formal

model of market demand.

We have presented a detailed demand model of brand-level competition within a Bass-

type category diffusion. Our model includes a market saturation effect and word-of-mouth

effects at both the category and the brand level. We also explicitly capture the �cross word-

of-mouth effects� between different brands, which allows us model differences in product

attractiveness. This is the most general demand model that has been used for a normative

analysis of entry timing in competitive new product diffusion and it matches the current

state-of-the-art of empirical research (see Table 1).

In this general setting, we provide analytical results for both products�s sales trajectories
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as well as their lifecycle sales (Theorem 1). We use these results to study the impact of

launch time delay (acceleration) on overall lifecycle sales (Theorem 2). While at the

aggregate level, these results show a remarkable similarity to the qualitative arguments

of the existing literature (Figure 2), we show that our analytical Þndings have direct

practical implications for product development decision making, especially with respect to

the coordination between marketing and operations (Theorem 3). We also use our results

to study the resulting game between two brands choosing their launch times strategically

(Theorem 4).

Our analysis related to the cost of delayed product launch opens up several opportunities

for future research. First, our model of competition in launch times could be extended

to include price competition between the two brands. This would combine our work

with earlier research by Eliashberg and Jeuland (1986) as well as Krishnan et al. (1999).

Second, the focus of our analysis was on the trade-off between unit production costs and

sales revenues. As discussed above, a similar trade-off exists between product performance,

and thus ultimately product attractiveness, and sales revenues. For example Kouvelis and

Mukhopadhyay (1999) include a control variable about the design quality of the product.

Third, our model opens the door for empirical research, which could estimate our measures

of product attractiveness. In current models, this effect is frequently compounded with

the timing of market introduction, which makes it hard to determine if a newly introduced

brand failed because the incumbent brand had already gained sufficient market share or

because of superior design quality.

In summary, we believe that more research is needed to quantify trade-offs between

product development performance metrics, moving from �intuitive� arguments and ad-hoc

decision rules to more formal and transparent scientiÞc reasoning8.
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Appendix

Proof of Lemma 1

In our proof we only consider the case of T < 0, since the proof for T > 0 follows

similar steps. For T < 0 product 2 follows Bass-like diffusion for a period of time equal to

T before the Þrst sales of product 1 occur at t = tc. By that time, the cumulative sales

of product 2 reach the level of D2(T ). Thus, for t > tc the competitive diffusion process

proceeds according to (1) subject to initial conditions D1(t = tc) = 0, D2(t = tc) = D2(T ).

Consider an �adjusted� sales function D2(t) = D2(t)−D2(T ), where t = t − tc: for t ≥ 0
(1) becomes

dD1
dt

=

Ã
p1(T ) +

1

m(T )

³
q11(T )D1(t) + q12(T )D2(t)

´!³
m(T )−D1(t)−D2(t)

´
,

dD2

dt
=

Ã
p2(T ) +

1

m(T )

³
q21(T )D1(t) + q22(T )D2(t)

´!³
m(T )−D1(t)−D2(t)

´
,(32)

with initial conditions D1(t = 0) = D2(t = 0) = 0, where m(T ), pi(T ), and qij(T ) are

given by (11), (12), and (13), respectively.

Proof of Theorem 1

In the case when competing products enter the market simultaneously (T = 0), we use

the system of diffusion equations (4) for t ≥ tc to get
dD1
dt

=
µ
pβ +

q

m
((α1 + α2 − 1)D1(t) + (1− α2)D(t))

¶
(m−D) . (33)

Then, using Bass equation for the category sales D(t), we obtain

dD1
dD

=
pβ + q

m
((α1 + α2 − 1)D1 + (1− α2)D)

p+ q
m
D

. (34)

Below we focus on the only non-trivial case 0 < α1 + α2 < 2, α1 + α2 6= 1. We deÞne

D1 = D1 +
pm(β+α2−1)
q(α1+α2−1) , D = D +

pm
q
, to obtain

dD1

dD
= (α1 + α2 − 1)D1

D
+ 1− α2. (35)

Introducing u
³
D
´
= D1

D
, we can re-express (35) as

u0D = (α1 + α2 − 2)u+ 1− α2 (36)
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which can be integrated with the initial conditions D1(tc) = D2(tc) = 0 to yield

D1 =
pm

q (α1 + α2 − 1)
Ã
β − (1− α2)

(2− α1 − α2)
!Ã1 + q

pm
D

!α1+α2−1
− 1

+ (1− α2)
(2− α1 − α2)D

(37)

In the case of the delay in the market entry between the two products, we apply the

transformation of Lemma 1 to (37) to obtain (15). The expressions for the lifecycle sales

for both products (16) are immediately obtained by substituting m for D(t) in (15).

Proof of Theorem 2

In our analysis of (16) we focus on the case of T > 0, α1 + α2 < 2,α1 + α2 6= 1, since
the proofs for the remaining cases are easily obtained by following similar steps.

For T > 0, (16) becomes (here we omit the implied dependence on T )

M1 =

Ã
(1− α1)D
2− α1 − α2 +

pm

q (α1 + α2 − 1)
Ã
β − (1− α2)

(2− α1 − α2)
!! 1 + q

p

1 + qD
pm

α1+α2−1

+
(1− α2)

(2− α1 − α2)m−
pm

q (α1 + α2 − 1)
Ã
β − (1− α2)

(2− α1 − α2)
!
, (38)

Differentiating (38) with respect to D yields

∂M1

∂D
=

³
1 + q

p

´α1+α2−1
³
1 + qD

pm

´α1+α2
Ã
1− β + q (1− α1)D

pm

!
> 0. (39)

As a result, dM1

dT
= ∂M1

∂D
∂D
∂T
> 0. Further, differentiating (38) with respect to β, we get

∂M1

∂β
=

pm

q (α1 + α2 − 1)


 1 + q

p

1 + qD
pm

α1+α2−1 − 1
+ ∂M1

∂D

∂D

∂β
> 0, (40)

since both addends on the right-hand side of (40) are positive.

The easiest way to show the monotonicity of M1 with respect to α1 is by using the

original diffusion equations. Consider changing α1 to α1 + δα and deÞne

f1(t) = lim
δα→0

Ã
D1(t,α+ δα)−D1(t,α)

δα

!
. (41)

Subtracting product 1 diffusion equation for α1 + δα from that one for α1, dividing the

difference by δα, and taking the limit of δα→ 0, we get a differential equation for f1(t) :

df1(t)

dt
=
q

m
(m−D) (α1 + α2 − 1) f1(t) + q

m
(m−D)D1, (42)
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with the initial condition f1(t = 0) = 0. Let us deÞne t0 = min (t > 0, f(t) > 0). From the

initial condition on f1(t) and the non-negativity of
q
m
(m−D)D1 it follows that f1(t) = 0

for all t ∈ [0, t0). Then, df1(t=t0−0)dt
> 0, and f1(t) remains positive for some Þnite interval

after t0. After that, f1(t) cannot return to 0 due to the presence of the term
q
m
(m−D)D1

in (42). Thus, f1(t) ≥ 0 for all t ≥ t0, and, consequently, D1(t,α+δα)−D1(t,α)δα
> 0 for small

enough δα. As a result, ∂M1

∂α1
> 0. Similarly, ∂M2

∂α2
> 0, so that ∂M1

∂α2
= ∂(m−M2)

∂α1
< 0.

For the second-order properties of M1 we get

d2M1

dT 2
=

Ã
dD

dT

!2
dM1

dD

 d

dD

Ã
log

Ã
dM1

dD

!!
+
1
dD
dT

d

dT

Ã
log

Ã
dD

dT

!! , (43)

so that the sign of d
2M1

dT 2
is the same as the sign of

f
³
D
´
= m

 d

dD

Ã
log

Ã
dM1

dD

!!
+
1
dD
dT

d

dT

Ã
log

Ã
dD

dT

!!
=

1
p(1−β)
q(1−α1) + Y

− α1 + α2p
q
+ Y

+
1

pβ
qα1
+ Y

− 1

1− Y , (44)

where Y = D
m
. In (44) we have used (39) and the fact that dD

dT
=
³
pβ + qα1

m
D
´ ³
m−D

´
for T > 0. Further, deÞne

A0 =

Ã
p

q

!2 1− β
1− α1 +

β

α1
−
³
α1 + α2 +

p
q

´
β (1− β)

α1 (1− α1)

 ,
A1 =

p

q

Ã
(1− α1 − α2)

Ã
1− β
1− α1 +

β

α1

!
+ 2

!

+

Ã
p

q

!2 Ã
2 (α1 + α2)β (1− β)

α1 (1− α1) + (α1 + α2 − 1)
Ã
1− β
1− α1 +

β

α1

!!
,

A2 = 2− α1 − α2 + p
q

Ã
(α1 + α2 − 1)

Ã
1− β
1− α1 +

β

α1

!
− 2

!
, A3 = α1 + α2 − 3,(45)

and let

Y min = min(Y |A3Y 3 +A2Y 2 +A1Y +A0 = 0, 0 ≤ Y ≤ 1),
Y max = max(Y |A3Y 3 +A2Y 2 +A1Y +A0 = 0, 0 ≤ Y ≤ 1). (46)

Re-arranging terms in (44), we obtain

f
³
D
´
=

A3
³
Y
´3
+A2

³
Y
´2
+A1Y +A0³

p(1−β)
q(1−α1) + Y

´ ³
p
q
+ Y

´ ³
pβ
qα1
+ Y

´ ³
1− Y

´ (47)
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with Ai, i = 0, .., 3, deÞned in (45). We note that
P3
i=0Ai < 0, and, thus, f

³
D
´
< 0 for

Y > Y max. Finally, the sign of f for Y < Y min is determined by the sign of A0. The

connection between T and Y is established from (6), so that

Tmin =
1

pβ + qα1
log

1− qα1Y min
pβ

1− Y min

 , Tmax = 1

pβ + qα1
log

1− qα1Ymax
pβ

1− Y max

 . (48)

Proof of Theorem 3

The the optimal solution to (10) is given by of the critical points of the proÞt function

M1(T )
³
1− ce−γ(T2−T )

´
or by T2. Differentiating the proÞt function with respect to T , we

obtain an equation for the set S of proÞt�s critical points

γ
µ
1− 1

1− ceγ(T−T2)
¶
+
d log (M1(T ))

dT
= 0, (49)

where M1 is expressed by (16). Let Sc be a subset of S such that for every Tc ∈ Sc
−cγ2eγ(Tc−T2)
(1− ceγ(Tc−T2))2 +

d2 log (M1(Tc))

d (Tc)
2 < 0. (50)

Sc represents a set of local maxima of the proÞt function. Then, the optimal launch gap

for product 1, T ∗ is

T ∗ = arg max
T∈{Sc∪T2}

³³
1− ceγ(T−T2)

´
M1(T )

´
. (51)

Clearly, in order to proof the statement in a), it is sufficient to consider the sensitivity

properties of the critical points Tc. Differentiating (49) with respect to c, we get

∂Tc
∂c

=

γeγ(Tc−T2)
(1−ceγ(Tc−T2))2Ã

−cγ2eγ(Tc−T2)
(1−ceγ(Tc−T2))2

+ d2 log(M1(Tc))

d(Tc)
2

! < 0, (52)

as the numerator in (49) is positive and the denominator is negative, according to (50).

Similarly,

∂Tc
∂T2

= −
cγ2eγ(Tc−T2)

(1−ceγ(Tc−T2))2Ã
−cγ2eγ(Tc−T2)
(1−ceγ(Tc−T2))2

+ d2 log(M1(Tc))

d(Tc)
2

! > 0, (53)

For the derivative with respect to α2 we obtain

∂Tc
∂α2

= −
∂
∂α2

³
d log(M1(Tc))

dTc

´
Ã

−cγ2eγ(Tc−T2)
(1−ceγ(Tc−T2))2

+ d2 log(M1(Tc))

d(Tc)
2

! . (54)
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so that the sign of ∂Tc
∂α2

coincides with the sign of ∂
∂α2

³
d log(M1(Tc))

dTc

´
. Below we analyze the

case T > 0 (the proof for the case T < 0 follows similar steps). We note that

dM1 (Tc)

dTc
=

³
1 + q

p

´α1+α2−1
³
1 + qD

pm

´α1+α2
Ã
1− β + q (1− α1)D

pm

!
dD(Tc)

dTc
, (55)

and, that for T > 0, ∂D(Tc)
∂α2

= 0. The sign of ∂
∂α2

³
dM1(Tc)
dTc

´
coincides with the sign of

∂
∂α2

³
log

³
dM1(Tc)
dTc

´´
, and

∂

∂α2

Ã
log

Ã
dM1 (Tc)

dTc

!!
= log

 1 + q
p

1 + qD
pm

 > 0. (56)

Theorem 2 states that ∂M1

∂α2
< 0, so that

∂

∂α2

Ã
d log (M1 (Tc))

dTc

!
= − 1

(M1 (Tc))
2

∂M1

∂α2

dM1 (Tc)

dTc
+

1

M1 (Tc)

∂

∂α2

Ã
dM1 (Tc)

dTc

!
> 0,

(57)

and ∂Tc
∂α2

> 0. Further,

∂Tc
∂γ

= −
³

ceγ(Tc−T2)
1−ceγ(Tc−T2)

´ ³
−1 + γ(T2−Tc)

1−ce−γ(T2−Tc)
´

Ã
−cγeγ(Tc−T2)
(1−ceγ(Tc−T2))2

+ d2 log(M1(Tc))

d(Tc)
2

! . (58)

so that ∂Tc
∂γ
> 0 when γ(T2−Tc)

1−ce−γ(T2−Tc) > 1 and ∂Tc
∂γ
< 0 when γ(T2−Tc)

1−ce−γ(T2−Tc) < 1. Letting x =

γ (T2 − Tc) and deÞning x (c) as the solution to (1− x)ex = c, we observe that ∂Tc
∂γ
< 0 is

equivalent to x < x(c). Further, for γ = 0, Tc equals to T2, since in that case (10) reduces

to maximization ofM1(T ). Then, for small γ,
∂Tc
∂γ
< 0 and ∂(γ(T2−Tc))

∂γ
> 0. As γ grows, the

inequality ∂Tc
∂γ
< 0 remains valid for γ ≤ γ∗ = min(γ|γ(T2 − T ∗) = x(c)). At γ∗, ∂Tc∂γ = 0,

and ∂(γ(T2−Tc))
∂γ

= (T2 − Tc) > 0, so that ∂Tc∂γ ≥ 0 for γ slightly above γ∗. It is clear that if,
at any greater value of γ, γ (T2 − Tc) again becomes equal to x(c), then, for that value of
γ, ∂Tc

∂γ
= 0, and ∂(γ(T2−Tc))

∂γ
> 0, so that γ (T2 − Tc) will again become greater than x(c),

and ∂Tc
∂γ
will remain non-negative.

In order to prove part b), we focus on the Þrst-order necessary equation for the local

maxima of the proÞt function (49). We can re-write this equation as

exp (−γ (T2 − T )) = 1

c

Ã
h(T )

γ + h(T )

!
, (59)

where

h(T ) =
d log (M1(T ))

dT
. (60)
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On the one hand, for T > 0 we use (55) to obtain

h(T ) =
1

M1

³
1 + q

p

´α1+α2−1
³
1 + qD

pm

´α1+α2
Ã
1− β + q (1− α1)D

pm

!
dD(T )

dT

≥ p(1− β)
m (p+ q)

dD(T )

dT
≥ p2β(1− β)

(p+ q)
min

Ã
1,
(pβ + qα1)

2 e(pβ+qα1)T2

(qα1 + pβe(pβ+qα1)T2)
2

!
= h∗(T2 > 0)(61)

where we have utilized the deÞnition ofD(T > 0) = D1(T ) (6). We note that
(pβ+qα1)

2e(pβ+qα1)T2

(qα1+pβe(pβ+qα1)T2)
2 <

1 if and only if T2 >
2

pβ+qα1
log

³
qα1
pβ

´
.

For T < 0 (product 2 is introduced before product 1), we can introduce T = −T =
T1 − T2 > 0, so that

h(T ) =
1

M1

dM1

dT
=

dM2

dD(T )

dD(T )

dT

1

m−M2

=
dM2

dD(T )

Ã
p(1− β) + qα2D(T )

m

! ³
m−D(T )

´
(m−M2)

(62)

where we have used the Bass identity dD(T )

dT
=
µ
p(1− β) + qα2D(T )m

¶³
m−D(T )

´
. Now,

since for T > 0, m ≥M2 ≥ D(T ), we have (m−D(T ))(m−M2)
≥ 1, and

h(T ) ≥ dM2

dD(T )

Ã
p(1− β) + qα2D(T )

m

!
≥ p2β(1− β)

(p+ q)
(63)

where we have used (55) and the fact that 0 ≤ D(T ) ≤ m. If T2 < 0, and the product 2 is
already on the market, the launch gap T can only be negative and (59) has no solutions,

provided that 1
c

³
h∗(T2<0)
γ+h∗(T2<0)

´
> 1, which is equivalent to h∗(T2 < 0) =

p2β(1−β)
(p+q)

> cγ
1−c . If,

on the other hand, T2 ≥ 0, then T can be both positive as well as negative. Negative

solutions to (59) do not exist if p
2β(1−β)
(p+q)

> cγ
1−c , and the positive solutions are eliminated

when h∗(T2 > 0) > cγ
1−c .

Proof of Theorem 4a

Considering the case with T ∗1 = T
∗
2 we note that there are two possibilities: T

∗
1 = T

∗
2 = 0

and T ∗1 = T ∗2 > 0. The Þrst case is possible if ∂Π1(T1,0)
∂T1

|T1=0 ≤ 0 and ∂Π2(0,T2)
∂T2

|T2=0 ≤ 0.

Using problem symmetry, we get

∂Π1 (T1, 0)

∂T1
|T1=0 =

∂Π2 (0, T2)

∂T2
|T2=0 = cγ

m

2
− (1− c) m

2

p
³
1 + q

p

´2α−1
2

 , (64)

so that
∂Π1 (T1, 0)

∂T1
|T1=0 =

∂Π2 (0, T2)

∂T2
|T2=0 ≤ 0⇔ c ≤ c∗. (65)
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The necessary condition for the existence of T ∗1 = T ∗2 = T > 0 can be formulated as
∂Π2(T,T2)

∂T2
|T2=T = 0, or

∂Π2 (T, T2)

∂T2
|T2=T = cγe−γT

m

2
−
³
1− ce−γT

´ m
2

p
³
1 + q

p

´2α−1
2

 = 0, (66)

which, in turn, implies the unique solution

T =
1

γ
log

µ
c

c∗

¶
. (67)

The last expression is positive if and only if c > c∗. It is easy to check that the sufficient

condition for (67) to be the local maximum of Π2 (T, T2),
∂2Π2(T,T2)
(∂T2)2

|T2=T ≤ 0, is satisÞed.
Thus, if entry-time Nash equilibrium exists, it is reached at (67). However, (67) may not

be the global maximum of Π2 (T, T2) with respect to T2 - for example, when Π2 (T, 0) is

greater than Π2 (T, T ). Thus, if Π2 (T, 0) > Π2 (T, T ), no solution to (20) and (21) exists.

We note that

Π2 (T, T ) = (m−M1(0)) (1− ce−γT ) = m

2
(1− c∗) , (68)

while

Π2 (T, 0) = (m−M1(−T )) (1− c) =
m
2
+
D∗

2

 1 + q
p

1 + qD∗
pm

2α−1
 (1− c) , (69)

where

D∗ = m

1− qα+ p
2

qα+ p
2
e(qα+

p
2 )T

 = m
1− qα+ p

2

qα+ p
2

³
c
c∗

´ qα+ p
2

γ

 . (70)

Thus, Π2 (T, 0) > Π2 (T, T ) is equivalent to

(1− c∗)
(1− c) < 1 +B (c)

 1 + q
p

1 + q
p
B (c)

2α−1 . (71)

where

B (c) = 1− qα+ p
2

qα+ p
2

³
c
c∗

´ qα+p2
γ

. (72)

Proof of Theorem 4b

i) We observe that T l1 = T l2 = 0 ⇔
³
∂Π1(T1,0)
∂T1

|T1=0 ≤ 0, ∂Π2(0,T2)∂T2
|T2=0 ≤ 0

´
. Note that,

according to (18)

∂Π1 (T1, 0)

∂T1
|T1=0 =

Ã
dM1 (−T1)

dT1

³
1− c1e−γ1T1

´
+M1 (−T1) c1γ1e−γ1T1

!
|T1=0
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= −dM1 (T )

dT
|T=0 (1− c1) +M1 (0) c1γ1

= −p(1− β)mβ
Ã
1 +

q

p

!α1+α2−1
(1− c1)

+c1γ1m

×
 1− α2
2− α1 − α2 +

p
³
β − 1−α2

2−α1−α2
´

q (α1 + α2 − 1)

Ã1 + q
p

!α1+α2−1
− 1


= m (1− c1)

µ
c1γ1
1− c1 − θ1

¶

×
 1− α2
2− α1 − α2 +

p
³
β − 1−α2

2−α1−α2
´

q (α1 + α2 − 1)

Ã1 + q
p

!α1+α2−1
− 1

 ,(73)
and, similarly,

∂Π2 (0, T2)

∂T2
|T2=0 = −p(1− β)mβ

Ã
1 +

q

p

!α1+α2−1
(1− c2)

+c2γ2m

×
 1− α1
2− α1 − α2 −

p
³
β − 1−α2

2−α1−α2
´

q (α1 + α2 − 1)

Ã1 + q
p

!α1+α2−1
− 1


= m(1− c2)

µ
c2γ2
1− c2 − θ2

¶

×
 1− α1
2− α1 − α2 −

p
³
β − 1−α2

2−α1−α2
´

q (α1 + α2 − 1)

Ã1 + q
p

!α1+α2−1
− 1

 .(74)
It is easy to show that

1− α2
2− α1 − α2 +

p

q (α1 + α2 − 1)
µ
β − 1− α2

2− α1 − α2
¶Ã1 + q

p

!α1+α2−1
− 1

 ≥ 0,

1− α1
2− α1 − α2 −

p

q (α1 + α2 − 1)
µ
β − 1− α2

2− α1 − α2
¶Ã1 + q

p

!α1+α2−1
− 1

 ≥ 0,(75)

provided that p < q, which is the standard assumption in Bass dynamics.

Thus,
³
∂Π1(T1,0)
∂T1

|T1=0 ≤ 0, ∂Π2(0,T2)∂T2
|T2=0 ≤ 0

´
⇔

³
c1γ1
1−c1 ≤ θ1, c2γ21−c2 ≤ θ2

´
.

ii) Below we prove the statement for the case of T l1 = 0, T l2 > 0 since the statement

for T l1 > 0, T
l
2 = 0 is obtained by simple interchange of indices and replacement of M1 by

m−M1 and β by 1− β. Note that
³
T l1 = 0, T

l
2 > 0

´
⇔µ

∂Π1(T1,T l2)
∂T1

|T1=0 ≤ 0, ∂Π2(0,T2)∂T2
|T2=T l2 = 0,

∂2Π2(0,T2)
(∂T2)2

|T2=T l2 ≤ 0
¶
. Since, according to (19),

∂Π2 (0, T )

∂T
= −dM1 (T )

dT

³
1− c2e−γ2T

´
+ (m−M (T )) c2γ2e

−γ2T , (76)
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and

∂2Π2 (0, T )

(∂T )2
= −d

2M1 (T )

dT 2

³
1− c2e−γ2T

´
−2dM1 (T )

dT
c2γ2e

−γ2T−(m−M (T )) c2(γ2)
2e−γ2T .

(77)

DeÞning by bT2 all T for which the right-hand side of (76) is 0 and the right-hand side
of (77) is non-positive, we get (28). Finally, according to (18),

∂Π1
³
T1, T

l
2

´
∂T1

|T1=0 = −
dM1

³
T l2
´

dT
(1− c1) +M1

³
T l2
´
c1γ1, (78)

so that

∂Π1
³
T1, T

l
2

´
∂T1

|T1=0 ≤ 0⇔
c1γ1
1− c1 ≤

1

M1

³
T l2
´ dM1

³
T l2
´

dT
. (79)

iii) Similarly to the proofs in parts a) and b), we observe that
³
T l1 > 0, T

l
2 > 0

´
⇔µ

∂Π2(T l1,T2)
∂T2

|T2=T l2 = 0,
∂2Π2(T l1,T2)

(∂T2)2
|T2=T l2 ≤ 0,

∂Π1(T1,T l2)
∂T1

|T1=T l1 = 0,
∂2Π1(T1,T l2)

(∂T1)2
|T1=T l1 ≤ 0

¶
. Now,

∂Π2
³
T l1, T2

´
∂T2

|T2=T l2 = −
dM1

³
T l2 − T l1

´
dT

³
1− c2e−γ2T l2

´
+
³
m−M1

³
T l2 − T l1

´´
c2γ2e

−γ2T l2 ,

∂Π1
³
T1, T

l
2

´
∂T1

|T1=T l1 = −dM1

³
T l2 − T l1

´
dT

³
1− c1e−γ1T l1

´
+M1

³
T l2 − T l1

´
c1γ1e

−γ1T l1 . (80)

Equating the right-hand sides of (80) to 0, and denoting T l = T l2 − T l1, we get

T l1 = − 1
γ1
log


1
c1

1

M1(T l)
dM1

dT

³
T l
´

γ1 +
1

M1(T l)
dM1

dT
(T l)

 , (81)

T l2 = − 1
γ2
log


1
c2

1

m−M1(T l)
dM1

dT

³
T l
´

γ2 +
1

m−M1(T l)
dM1

dT
(T l)

 , (82)

so that

T l = log




1
c1

1

M1(T l)
dM1

dT

³
T l
´

γ1 +
1

M1(T l)
dM1

dT
(T l)


1
γ1


1
c2

1

m−M1(T l)
dM1

dT

³
T l
´

γ2 +
1

m−M1(T l)
dM1

dT
(T l)


− 1
γ2

 . (83)

Further,

∂2Π2
³
T l1, T2

´
(∂T2)2

|T2=T l2 = −d
2M1

³
T l2 − T l1

´
dT 2

³
1− c2e−γ2T l2

´
− 2dM1

³
T l2 − T l1

´
dT

c2γ2e
−γ2T l2
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−
³
m−M1

³
T l2 − T l1

´´
c2(γ2)

2e−γ2T
l
2 , (84)

∂2Π1
³
T1, T

l
2

´
(∂T1)2

|T1=T l1 =
d2M1

³
T l2 − T l1

´
dT 2

³
1− c1e−γ1T l1

´
− 2

dM1

³
T l2 − T l1

´
dT

c1γ1e
−γ1T l1

−M1

³
T l2 − T l1

´
c1(γ1)

2e−γ1T
l
1 . (85)

Combining (84) and (85) with (80), we get

∂2Π2
³
T l1, T2

´
(∂T2)2

|T2=T l2 ≤ 0⇔ −
d2M1

³
T l2 − T l1

´
dT 2

≤ γ2
dM1

³
T l2 − T l1

´
dT

1 + c2e
−γ2T l2

1− c2e−γ2T l2
, (86)

∂2Π1
³
T1, T

l
2

´
(∂T1)2

|T1=T l1 ≤ 0⇔ d2M1

³
T l2 − T l1

´
dT 2

≤ γ1
dM1

³
T l2 − T l1

´
dT

1 + c1e
−γ1T l1

1− c1e−γ1T l1
. (87)

Now, using (81) and (82), we obtain

γ2
1 + c2e

−γ2T l2

1− c2e−γ2T l2
= γ2 +

2

m−M1 (T l)

dM1

dT

³
T l
´
, (88)

γ1
1 + c1e

−γ1T l1

1− c1e−γ1T l1
= γ1 +

2

M1 (T l)

dM1

dT

³
T l
´
. (89)

Thus, the necessary and sufficient conditions for T l1 and T
l
2 to be �matching� maxima of

the proÞt functions are expressed by (29) and (30) with (31).
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 Methodology Demand model Competitive activity 

a) Number of competitors 
b) Decision 

Mahajan, Sharma, 
Buzzell (1993) 

Empirical Competitive diffusion with  
a) saturation effect 
b) word-of-mouth effect at 
category and brand level 
c) Brands can differ in their 
word-of-mouth, reflecting 
different attractiveness levels 

NA 

Krishnan, Bass, Kumar 
(2000) 

Empirical Competitive diffusion with  
a) saturation effect 
b) word-of-mouth effect at 
category and brand level 

NA 

Eliashberg and Jeuland 
(1986) 

Normative Competitive diffusion with  
a) saturation effect 
b) NO word-of-mouth effect 
 

a) 2 (after entry) 
b) Price for given entry 

Fershtman, Mahajan, 
and Muller (1990) 

Normative Competitive diffusion with 
a) NO saturation effect  
b) Word-of-mouth effect at 
the brand level  

a) 2 (after entry) 
b) price and advertising for a 
given entry 

Kalish, Mahajan, and 
Muller (1995) 

Normative Competitive diffusion with  
a) saturation effect 
b) word-of-mouth effect only 
at the brand level 

a) 2 (potential entrants in 
second market 
b) entry timing for second 
market 

Present Manuscript Normative Competitive diffusion with  
a) saturation effect 
b) word-of-mouth effect at 
category and brand level 
c) Brands can differ in their 
word-of-mouth, reflecting 
different attractiveness levels  

a) 2 (after entry)  
b) timing of entry  

 
Table 1: Empirical and Analytical Models of Competitive New Product Diffusion

Product 
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Cost

Development 
Time

Product
Cost

Product 
performance

Development 
Time

New Product
Profitability

Figure 1: Trade-offs in product development (left) and the need for ‘dollarizati

Source: Smith and Reinertsen (1991)
Ulrich and Eppinger (1999)



Figure 2: Qualitative arguments on the impact of an additional development time.
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Source: Kalyanaram and Krishnan (1997)
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Source: Urban and Hauser (1993)
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Figure 3: The model of brand level adoption in a presence of competition.

Pool of potential adopters: m-D1(t)-D2(t)
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D1(t): Adopters of Brand 1
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D2(t): Adopters of Brand 2
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Customers who adopt 
based on word of mouth 
from a previous adopter of 
the same category AND the 
same brand

Customers who adopt based 
on word of mouth from a 
previous adopter of the same 
category but of a 
DIFFERENT brand



Figure 5: Demand rate for competitor 1 as a function of the launch gap T (p = 0.0163221, q = 
0.325044, m = 4.12984x107, α1 = α2 = 0.9, β = 0.5).
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Figure 4: Demand rate for competitor 1 as a function of the launch gap T (p = 0.0163221, q = 
0.325044, m = 4.12984x107, α1 = α2 = 0.5, β = 0.5).
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Figure 7: Rate of market share loss for different values of the category-level 
imitation parameter q (c = 0.2, α1 = 0.5, α2 = 0.5, β = 0.5, T2 = 50)
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Figure 6: Rate of market share loss as a function of launch gap T
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Figure 8: Rate of market share loss in the case of brands with 
different attractiveness levels (c = 0.2, β = 0.5, T2 = 50, α1= 0.8, α2=0.6).
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Figure 9: Optimal launch time for product 1, T1
* , as a function of 

anticipated entry of product 2 (c  = 0.6, γ = 0.2, α1 = α2 = 0.3, β = 0.9).
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Figure 10ab: Sensitivity Analysis: optimal launch gap T* as a function of cost parameter c (γ 
= 0.1, α1 = α2 = 0.9, β = 0.5, T2 =30) (7a) and attractiveness of competing product α2 (γ = 0.1, α1 = 
0.09, c=0.99, β = 0.9, T2 =30) (7b). 
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Figure 11: Optimal gap T* as a function of DFM-effectiveness parameter γ
(c  = 0.6, α1 = 0.9, α2 = 0.9, β = 0.5, T2 = 30).

Figure 12: The best time response functions in the case of symmetric products (p = 0.0163221, q = 
0.325044, m = 4.12984x107, c  = 0.5, γ = 0.1, α1 = α2 = 0.55, β = 0.5).
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Revenues of competitor 1

Launch acceleration of 
competitor 1, 40-T1
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Figure 13: Revenues as a function of launch acceleration.

 
 β = 0.01 β = 0.5 β = 0.99 
α1 = α2 = 0.9 T1

*=0; T2
*=4.06 T1

*=0; T2
*=0 T1

*=4.06; T2
*=0 

α1 = α2 = 0.55 No pure equilibrium No pure equilibrium No pure equilibrium 

α1 =0.9; α2 = 0.55 No pure equilibrium T1
*=0; T2

*=0 No pure equilibrium 
 
Table 2: Existence of Nash-equilibrium entry times for two competitors with symmetric 
cost structures: c1=c2=0.1, γ1= γ2=0.1 (p=0.0163221, q=0.325044, m=4.12984x107). 
 
 γ1 = 0.1; γ2 = 0.1 γ1 = 0.1; γ2 = 0.001 γ1 = 0.001; γ2 = 0.1 
c1 = c 2 = 0.5 T1

*= T2
*=0.399 T1

*=0.252; T2
*=0 T1

*=0; T2
*=0.252 

c1 = c 2 = 0.001 T1
*=0; T2

*=0 T1
*=0; T2

*=0 T1
*=0; T2

*=0 
c1 = 0.5; c 2 = 0.001 T1

*=0.252; T2
*=0 T1

*=0.252; T2
*=0 T1

*=0; T2
*=0 

 
Table 3: Nash-equilibrium entry times for two products with symmetric diffusion 
parameters: α1=α2=0.9, β=0.5 (p=0.0163221, q=0.325044, m=4.12984x107). 

T2=20

α1 = 0.9, 
α2 = 0.9
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Figure 14ab: Revenue rate for different launch scenarios (α1= 0.9, α2=0.9 left and
α1= 0.3, α2=0.8 right).

Figure 15: Local maxima in the profit function
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