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An important managerial problem in product design in the extent to which testing activi-
ties are carried out in parallel or in series. Parallel testing has the advantage of proceed-

ing more rapidly than serial testing but does not take advantage of the potential for learning
between tests, thus resulting in a larger number of tests. We model this trade-off in the form
of a dynamic program and derive the optimal testing strategy (or mix of parallel and serial
testing) that minimizes both the total cost and time of testing. We derive the optimal testing
strategy as a function of testing cost, prior knowledge, and testing lead time. Using infor-
mation theory to measure the test efficiency, we further show that in the case of imperfect
testing (due to noise or simulated test conditions), the attractiveness of parallel strategies
decreases. Finally, we analyze the relationship between testing strategies and the structure
of design hierarchy. We show that a key benefit of modular product architecture lies in the
reduction of testing cost.
(Testing; Prototyping; Learning; Optimal Search; Modularity )

1. Introduction
Beginning with Simon (1969), a number of innovation
researchers have studied the role of testing and exper-
imentation in the research and development process
(Simon 1969, Allen 1977, Wheelwright and Clark 1992,
Thomke 1998, Iansiti 2000). More specifically, Simon
first proposed that one could “think of the design pro-
cess as involving, first, the generation of alternatives
and, then, the testing of these alternatives against a
whole array of requirements and constraints. There
need not be merely a single generate-test cycle, but
there can be a whole nested series of such cycles”
(Simon 1969, p. 149).
The notion of “design-test” cycles was later

expanded by Clark and Fujimoto (1989) to “design-
build-test” to emphasize the role of building proto-
types in design, and to “design-build-run-analyze” by
Thomke (1998), who identified the analysis of a test or
an experiment to be an important part of the learning

process in product design. These results echoed ear-
lier empirical findings by Allen (1977, p. 60) who
observed that research and development teams he
studied spent, on average, 77.3% of their time on
experimentation and analysis activities that were an
important source of technical information for design
engineers. Similarly, Cusumano and Selby (1995) later
observed that Microsoft’s software testers accounted
for 45% of its total development staff. Because test-
ing is so central to product design, a growing number
of researchers have started to study testing strategies,
or, to use Simon’s words once more, optimal struc-
tures for nesting a long series of design-test cycles
(Cusumano and Selby 1995, Thomke and Bell 2001).
Testing and iteration have been identified as variables
reducing time-to-market, especially in industries of
high uncertainty and rapid change. The accelerating
effect of testing has been reported by Eisenhardt and
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Tabrizi (1995) in the computer industry, as well as by
Terwiesch and Loch (1999) across various sectors of
the electronics industries.
Integral to the structure of testing is the extent to

which testing activities in design are carried out in
parallel or in series. Parallel testing has the advan-
tage of proceeding more rapidly than serial testing,
but does not take advantage of the potential for learn-
ing between tests—resulting in a larger number of
tests to be carried out. As real-world testing strate-
gies are combinations of serial and parallel strategies,
managers and designers thus face difficult choices in
formulating an optimal policy for their firms. This
is particularly important in a business context where
new and rapidly advancing technologies are chang-
ing the economics of testing.
The purpose of this paper is to study the fundamen-

tal drivers of parallel and sequential testing strategies
and develop optimal policies for research and devel-
opment managers. We achieve this by formulating a
model of testing that accounts for testing cost and
lead time, prior knowledge, and learning between
tests. We show formally under which conditions it is
optimal to follow a more parallel or a more sequential
approach. Moreover, using a hierarchical representa-
tion of design, we also show that there is a direct link
between the optimal structure of testing activities and
the structure of the underlying design itself, a rela-
tionship that was first explored by Alexander (1964)
and later reinforced by Simon (1969).
Our analysis yields three important insights. First,

the optimal mix of parallel and sequential testing
depends on the ratio of the (financial) cost and (cost
of) time of testing: More expensive tests make sequen-
tial testing more economical. In contrast, slower tests
make parallel testing more attractive for development
managers (see §3).
Second, imperfect tests reduce the potential uncer-

tainty reduction when testing design alternatives.
Using information theory to measure test efficiency,
we show that such imperfect tests decrease the attrac-
tiveness of parallel testing strategies (see §4).
Third, the structure of design hierarchy influences to

what extent tests should be carried out in parallel or
sequentially. We show that a modular product archi-
tecture can radically reduce testing cost compared

to an integral architecture. We thus suggest a link
between the extensive literature on design architec-
ture and the more recent literature on testing (§5).

2. Parallel and Sequential Testing
in Product Design

Design can be viewed as the creation of synthesized
solutions in the form of products, processes, or sys-
tems that satisfy perceived needs through the map-
ping between functional elements (FEs) and physical
elements (PEs) of a product. Functional elements are
the individual operations and transformations that
contribute to the overall performance of the prod-
uct. Physical elements are the parts, components, and
subassemblies that implement the product’s functions
(Ulrich and Eppinger 2000, see also Suh 1990, p. 27).
Assume that we are interested in designing the

opening and closing mechanism of a door. To illus-
trate this view of product design, we consider only
two of many possible FEs: the ability to close it (block
it from randomly swinging open), with the possibil-
ity of opening from either side, and the ability to lock
it (completely disallowing opening from one side or
from both sides). The physical elements, or design
alternatives, include various options of shape and
material for the handle, the various barrels, and the
lock (see Figure 1).
An integral characteristic of designing products

with even moderate complexity is its iterative nature.
As designers are engaged in problem solving, they
iteratively resolve uncertainty about which physical
elements satisfy the perceived functional elements.
We will refer to the resolution of this uncertainty as a
test or a series of tests.

Figure 1 FEs and PEs in the Design of a Door
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It is well known that product developers generally
do not expect to solve a design problem via a single
iteration, and they often plan a series of design-test
cycles or experiments, to bring them to a satisfactory
solution in an efficient manner (Allen 1966, Simon
1969, Smith and Eppinger 1997, Thomke 1998). When
the identification of a solution to a design problem
involves more than one such iteration, the informa-
tion gained from a previous test(s) may serve as an
important input to the design of the next one. Design-
test cycles that do incorporate learning derived from
other cycles in a set are considered to have been con-
ducted in series. Design-test cycles that are conducted
according to an established plan that is not modified
as a result of the finding from other experiments are
considered to have been conducted in parallel.
For example, one might carry out a preplanned

“array” of design experiments, analyze the results
of the entire array, and then carry out one or more
additional verification experiments as is the case in
the field of formal “design of experiments (DOE)”
methods (Montgomery 1991). The design-test cycles
in the initial array are viewed as being carried out
in parallel, while those in the second round are car-
ried out in series with respect to that initial array.
Such parallel strategies in R&D have been first sug-
gested by researchers as far back as Nelson (1961) and
Abernathy and Rosenbloom (1968), and more recently
by Thomke et al. (1998) and Dahan (1998).
Specifically, there are three important factors that

influence optimal testing strategies: cost, learning
between tests, and feedback time. First, a test’s cost
typically involves the cost of using equipment, mate-
rial, facilities, and engineering resources. This cost can
be very high, such as when a prototype of a new car
is used in destructive crash testing, or it can be as low
as a few dollars, such as when a chemical compound
is used in pharmaceutical drug development and is
made with the aid of combinatorial chemistry meth-
ods and tested via high-throughput screening tech-
nologies (Thomke et al. 1998). The cost to build a test
prototype depends highly on the available technol-
ogy and the degree of accuracy, or fidelity, that the
underlying model is intended to have (Bohn 1987).
For example, building the physical prototype used

in automotive crash tests can cost hundreds of thou-
sands of dollars, whereas a lower-fidelity “virtual”
prototype built inside a computer via mathematical
modeling can be relatively inexpensive after the initial
fixed investment in model building has been made.
Second, the amount of learning that can be incor-

porated in subsequent tests is a function of several
variables, including prior knowledge of the designer,
the level of instrumentation and skill used to ana-
lyze test results, and, to a very significant extent,
the topography of the “solution landscape” that the
designer plans to explore when seeking a solution to
her problem (Alchian 1950, Kauffman and Levin 1987,
Baldwin and Clark 1997a). In the absence of learning,
there is no advantage in carrying out tests sequen-
tially, other than meeting specific constraints that a
firm may have (e.g., limited testing resources).
Third, the amount of learning is also a function

of how timely feedback is received by the designer.
It is well known that misperceptions and delays in
feedback from actions in complex environments can
lead to suboptimal behavior and diminished learning
(Huberman and Hogg 1988, Bohn 1987). The same
is true for noise that has been shown to reduce the
ability to improve operations (Bohn 1995). Thus, the
time it takes to carry out a test and obtain results not
only allows design work to proceed sooner, but also
influences the amount of learning between sequential
tests.

3. A Model of Perfect Testing
We start our analysis by focussing on the optimal
testing strategy in the design of one single physical
element (PE). Consider, for example, the PE “locking
mechanism” from Figure 1, for which there exist a
number of design alternatives, depicted in Figure 2.
Three different geometries of the locking barrel might
fulfill the functional element (FE) “lock the door.”
Based on her education and her previous work, the
design engineer forms prior beliefs, e.g., “a cylinder
is likely to be the best solution; however, we might
also look at a rectangular prism as an alternative
geometry.”
More formally, the engineer’s prior beliefs can be

represented as a set of probabilities pi defined over

Management Science/Vol. 45, No. 5, May 2001 665



LOCH, TERWIESCH, AND THOMKE
Parallel and Sequential Testing

Figure 2 Solutions for the PE “Locking Mechanism” to Fulfill the FE
“Lock the Door”

the alternatives 1 · ·N where pi = Pr{Candidate i is
the most preferred solution}. To resolve the residual
uncertainty, one geometry i is tested. Once the engi-
neer can observe the result of the test, she gains addi-
tional information on whether or not this geometry is
likely to be the most preferred solution available. If a
test resolves the uncertainty corresponding to a solu-
tion candidate completely, we refer to this test as a
perfect test (imperfect testing will be analyzed in §4).
Based on a test outcome, the designer can update her
beliefs. If the tested candidate turns out to be the most
preferred, its probability gets updated to 1 and the
other probabilities are renormalized accordingly. Oth-
erwise, pi is updated to 0. This updating mechanism
represents learning in the model. It implies that a test
reveals information on a solution candidate relative to
the other candidates.
Of course, perfect testing applies only to problems

where the test outcome can be defined in binary
terms. A good example of such development prob-
lems is geometric fit. When different parts and/or
subsystems occupy the same coordinates in three-
dimensional space, they interfere with one another.
These so-called interference problems are very com-
mon during the geometric integration of a complex
product. As Boeing has learned over many decades,
airplane development can involve hundreds of thou-
sands of potential interferences that are identified
through testing with computer-aided design models,
prototypes, and during final assembly. Boeing man-
agers define the degree to which such testing occurs
in parallel or sequentially through the design of its
development process. Each of those tests results in
an “interference/no interference” result and, if the
underlying model is accurate, allows the respective

probabilities to be updated to 1 or 0. In such interfer-
ence tests, there are two kinds of learnings that can be
observed: (a) the actual outcome of the test (is there an
interference?), and (b) information about other likely
interferences that guides further downstream testing.
In our paper, (a) relates to the efficiency of individual
tests, whereas (b) relates to the learning mechanism
between multiple rounds of tests.
Perfect testing also applies in contexts outside prod-

uct development, for example, in the validation of
a new piece of production equipment. Each of a
number of potential root causes for a malfunction-
ing can be confirmed through a specific diagnosing
test. A similar situation exists in medical diagnosis.
Consider a patient who displays a certain symptom,
e.g., hypotension. Each of a number of possible root
causes can be confirmed through one specific and reli-
able diagnostic test, and multiple hypotheses may be
tested sequentially or in parallel.
While the exact learning (updating) mechanism

may differ from context to context, our model rep-
resents the real-world intermediate case between no
learning (i.e., no useful information is revealed about
which candidate should be tested in the next round)
and perfect learning (i.e., a test reveals the direction
towards the optimal solution, thus one test character-
izes all candidates). As defined earlier, the presence
of some learning between testing rounds is important
in motivating the value of sequential tests. Thus, per-
fect learning would make parallel testing unnecessary,
while a decrease in learning would clearly increase
the attractiveness of parallel testing (we can show
this as a special case of our model). Ignoring learning
in our model would skew our results toward paral-
lel search, and furthermore, learning has been identi-
fied as an important element of product development
in the literature (Sobek et al. 1999). In our model,
we hold learning between sequential rounds of test-
ing constant, but vary a test’s efficiency by including
imperfect testing, i.e., the notation that a test does not
fully reveal whether a design alternative is indeed the
most preferred solution.
We assume that there is a fixed cost c per test, as

well as a fixed lead time � between the beginning
of test-related activities and the observability of the
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newly generated information. If lead time is impor-
tant, as in the presence of a delay, it can be beneficial
to order several tests in parallel. Let c� be the cost
of delay for the time period of length � . Testing thus
“buys” information in the form of updated probabil-
ities at the price of nc+ c� , where n is the number of
tests the engineer orders in one period.
The problem of searching for a target in a search

space with a probability distribution of the target’s
position in this space has long been studied in the
fields of mathematics and computer science (e.g.,
Stone 1975). More recently, in the presence of comput-
ers equipped with multiple parallel processors, there
has been a growing interest in the development of
parallel search algorithms (Quinn 1987). Unlike our
model, these algorithms take the number of parallel
processors as exogenously given and constant over
the computation time required for the problem. Our
model, in contrast, considers the degree of paral-
lelism as a decision variable that can dynamically be
changed over the search.
Models of search and Bayesian learning have also

been developed in statistics and economics literature
under the label of sequential sampling procedures
(sometimes also referred to as the “Secretary-,”
“Marriage-,” or “Beauty-contest problem,” see e.g.,
Degroot 1970). In these models, a decision maker
needs to trade off a given cost of sampling a unit
with the value of additional information. Given this
one-dimensional cost-based (opposed to cost and
time-based) approach to search, parallel search is not
considered �n = 1�. In a result known as “Pandora’s
rule,” Weitzmann (1979) shows that if there are N
“boxes” to be opened in a sequential search, box i
offering a reward R with probability pi, the box with
the lowest “cost” �Ai�c/p�Ai� should be opened first.1

Here, �Ai� is the number of objects in the box, c the
search cost per object, and p�Ai� the probability that
the box contains the reward. Note that if all sets have
equally many elements (in particular, if each solution
candidate alone forms a set), this rule suggests to test
the most likely candidate first.

1 This review of Weitzman’s result has been adapted to correspond
to our situation. In our problem, we consider less general rewards
than in Weitzman’s Pandora’s rule (in our model, a candidate is
either right or wrong; there is no generally distributed reward).

However, Weitzman assumes that only one box can
be opened at a time �n= 1�, which ignores the aspect
of testing lead time. In most testing situations, the
designer not only needs to decide which test to run
next, but also how many tests should be run in parallel.
On the one hand, running many tests in parallel will
result in diminishing returns. The value of running
one additional test (uncertainty reduction) may be
smaller than its incremental cost. For a development
manager, this creates an interesting trade-off between
cost and time, which we will now explore further.
The described testing problem can be seen as a

dynamic program, where the state of the system is the
set S of remaining potential solution candidates with
their probabilities. The decision to be made in each
stage of the dynamic program is the set of states to be
tested next; call it A. The immediate cost of this deci-
sion is �A�c+ c� , and the resulting state is the empty
set with probability p�A�=∑

i∈A pi, and it is S−A with
probability

∑
i∈�S−A� pi. A testing policy is optimal for

a given set of solution candidates with attached prob-
abilities pi, if it minimizes the expected cost (testing
and delay) of reaching the target state S = �.
Theorem 1. To obtain the optimal testing policy, order

the solution candidates in decreasing order of probability
such that pi ≥ pi+1. Assign the first candidates to set A1,
the “batch” to be tested first, until its target probability
specified in Equation (2) is reached. Assign the next can-
didates to set A2 to be tested next (if the solution is not
found in A1), and so on, until all N leaves are assigned
to n sets A1� � � � �An. The optimal number of sets2 is

n=min

{
N�max

{
1�

[
1
2
+
√
1
4
+ 2cN
c�

]}}
� (1)

where �· · · � denotes the integer part of a number. The sets
are characterized by their probabilities p�Ai�=

∑
j∈Ai pj :

p�Ai�=
1
n
+ c�
cN

(
n+1
2

− i
)
= 2�n− i�
n�n−1�

� (2)

It is interesting to note that the batch probabilities
are described as a deviation from the average 1/n: The
first batches have a higher probability, the last batches

2 The number of batches includes the last (nth) set, which is empty.
Thus, the de facto number of sets is n−1.
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a lower probability than the average. Note that this
does not imply that the number of solution candidates
in the first batches tested is also higher: If probabilities
initially fall off steeply with i, the first batch tested
may have a lower number of solution candidates than
the second batch. If the total number of candidates N
is very large, the difference in probability among the
batches shrinks.
The policy in Theorem 1 behaves as we would intu-

itively expect. When the testing cost c is very large,
the batches shrink to 1, n = N , and testing becomes
purely sequential to minimize the probability that a
given candidate must be tested. If c� approaches infin-
ity, n approaches 1: Testing becomes purely parallel
to minimize time delay. When the total number of
solution candidates N grows, the number of batches
grows with

√
N . We describe this extreme behavior

more precisely in the following corollary.

Corollary 1. If 1/N < c/c� < �N + 1�/2, the opti-
mal expected testing time is �n+ 1�/3, and the expected
total testing cost is �c��n+1��3n+2��/12. If c/c� ≤ 1/N ,
optimal testing is fully parallel �n = 1�, the testing time
is 1, and the optimal total testing cost is �c� +Nc�. If
c/c� > �N + 1�/2, optimal testing is fully sequential, and
the optimal total cost is

∑
i ipi�c+ c��. If all candidates are

equally likely, this becomes ��N +1�/2��c+ c��.
In addition to defining the optimal testing policy,
Theorem 1 provides an interesting structural insight
concerning when to perform parallel search. Earlier
studies have proposed that new testing technolo-
gies have significantly reduced the cost of testing,
thus increasing the attractiveness of parallel strate-
gies (e.g., Sobek et al. 1999, Terwiesch et al. 1999,
Thomke 1998). Our results clearly demonstrate this—
as test cost decreases, the optimal batch size goes up.
For the extreme case of c = 0, the above corollary
prescribes a fully parallel search. This is precisely
what happened in the pharmaceutical industry when
new technologies such as combinatorial chemistry
and high-throughput screening reduced the cost of
making and testing a chemical compound by orders
of magnitude. Instead of synthesizing and evaluating,
say, 5–10 chemical compounds per testing iteration,
pharmaceutical firms now test for hundreds or thou-
sands of compounds per test batch in the discovery
and optimization of new drug molecules.

However, as the model shows, looking primarily at
the cost benefits of new technologies ignores a sec-
ond improvement opportunity. To fully understand
the impact of new testing technologies on testing cost
and search policy, one must consider that the results
not only come at less cost, but that they also come
in less time. In the automotive industry, for example,
new prototyping technologies such as computer sim-
ulation or stereolithography have reduced the lead
time of a test from months or weeks to days or hours.
Thus, not only c changes, but also c� .
If both parameters change simultaneously, the

amount of parallel testing might go down or up.
This interplay between testing cost and information
turnaround times is illustrated in Figure 3. The coor-
dinates are speed �1/c�� and cost effectiveness �1/c� of
tests. The diagram in the lower left corner of the fig-
ure represents testing economics with relatively low
speed and cost effectiveness, resulting in some opti-
mal combination of parallel and sequential testing as
described in Theorem 1. Moving toward the lower
right of the figure corresponds to a reduction in test-
ing cost, moving up to a reduction in testing time (or
urgency). If a testing cost improvement outweighs a
time improvement, the test batches should grow and
search becomes more parallel, as in the pharmaceuti-
cal example above.

Figure 3 Impact of Test Speed and Cost on Testing Strategy
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If, in contrast, the dominant improvement is in
the time dimension, the faster feedback time allows
for learning between tests. The optimal search policy
becomes “fast-sequential.” In this case, total testing
cost and total testing time can decrease: total testing
time because of shorter test lead times and total test-
ing cost because of “smarter” testing (based on the
learning between tests, resulting in fewer wasted pro-
totypes). Thus, in the evaluation of changing testing
economics, a purely cost-based view may lead to an
erroneous conclusion.

4. Imperfect Testing
Real-world testing is often carried out using simpli-
fied models of the test object (e.g., early prototypes)
and the expected environment in which it will be used
(e.g., laboratory environments). This results in imper-
fect tests. For example, aircraft designers often carry
out tests on possible aircraft design alternatives using
scale prototypes in a wind tunnel—an apparatus with
high wind velocities that partially simulate the air-
craft’s intended operating environment. The value of
using incomplete prototypes in testing is two-fold:
to reduce investments in aspects of “reality” that are
irrelevant for the test, and to control out noise to sim-
plify the analysis of test results. We model the effect
of incomplete tests and/or noise as residual uncertainty
that remains after a design alternative has been tested
(Thomke and Bell 1999). Such a test will be labeled as
imperfect.
Only one candidate can be the most preferred

�i = 1�; all others must be less preferred (k = 0 for all
k not equal to i). The tester does not know initially
which candidate is preferred. We assume that a test
of design candidate i gives one of only two possi-
ble signals: x = 1 indicates “candidate i is the most
preferred design,” and x = 0 indicates “candidate i is
not the most preferred design.” An imperfect test is
characterized by its error probabilities: The false neg-
ative occurs with Prx = 0 � i = 1� = 0�5�1− ��, and
the false positive with Prx = 1 � i = 0� = 0�5�1−��.
The test fidelity � captures the power of the test in
identifying a winning design candidate when it is
tested �� ∈ �0�1�, from uninformative to fully infor-
mative). Similarly, the fidelity � represents the power

of the test in correctly eliminating an inferior can-
didate when it is tested. This implies the following
marginal probabilities of the signal from testing can-
didate i with fidelities � and �:

Prxi = 1� = 1
2
�1−�+ ��+��pi��

Prxi = 0� = 1
2
�1+�− ��+��pi��

(3)

The posterior probabilities of all design candidates
can be written as (j not tested):

pi�xi = 1� = �1+��pi
1−�+ ��+��pi

�

pi�xi = 0� = �1−��pi
1+�− ��+��pi

�

(4)

pj�xi = 1� = �1−��pj
1−�+ ��+��pi

�

pj�xi = 0� = �1+��pj
1+�− ��+��pi

�j 
= i��
(5)

The fact that all probabilities are updated after test-
ing candidate i represents learning. If a test is per-
fect �� = �= 1�, these posterior probabilities describe
the perfect testing in the previous subsection. If a test
is not perfect, it only reduces the uncertainty about a
design alternative. It takes an infinite number of tests
to reduce the uncertainty to zero (bring one pk to
1). Therefore, the designer can only strive to reduce
uncertainty of the design to a “sufficient confidence
level �1−��” in the design, where one pk ≥ �1−��,
and

∑
j 
=k pj ≤ �. This is one of the reasons why a

designer “satisfices,” as opposed to optimizes, a prod-
uct design (Simon 1969).
We first concentrate on a situation where only one

alternative can be tested at once (sequential testing,
Theorem 2a), turning to testing several alternatives
in parallel afterward (Theorem 2b). The designer’s
problem is to find a testing sequence that reaches a
sufficient confidence level at the minimum cost. As
all information available to the designer is encapsu-
lated in the system state S = p= p1� � � � � pN � and the
transition probabilities (4) and (5) depend only on S,
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we can formulate the problem as a dynamic program:
At each test, pay an immediate cost of �c+c�� (for exe-
cuting the test and for the time delay). Find a policy
��p� that chooses a solution candidate i ∈ 1� � � � �N �
to minimize:

V�p� = �c+ c��+Mini
{
Prxi = 1�V �pi�xi = 1��

pj�xi = 1� ∀ j 
= i�+Prxi = 0�V �pi�xi = 0��

pj�xi = 0� ∀ j 
= i�}� (6)

where V�p� = 0 if and only if a design of sufficient
confidence level has been found. While we cannot
write down the optimal testing cost for this problem,
we can identify the optimal policy. In many, but not
all, cases it has the same structure as for perfect tests.

Theorem 2a. If testing is performed sequentially, that
is, one design alternative at a time, it is optimal to always
test the candidate with pi closest to:

p∗ =
[
�− 2�f ���−f ����/��+��−1

2�f ���−f ����/��+��+1

]/
��+��� (7)

This is equivalent to testing the most likely candidate (with
the largest pi) whenever � ≥ �. If the false negative fidelity
� > �, it may be optimal to test the second-most likely
candidate. (f �·� is characterized in the proof.)

Standard dynamic programming techniques cannot
establish optimality of a myopic policy as stated in
the theorem because the transition probabilities are
state dependent. Therefore, we use information the-
ory as a tool to express the uncertainty reduction
offered by imperfect tests (Suh 1990, Reinertsen 1997).
This theory is based on Shannon (1948) and states
that the entropy of a system indicates the amount of
“choice” or uncertainty in that system. In particular,
we define the entropy of the ith design alternative
and the entropy of the entire design problem, respec-
tively, as

Hi =−pi log pi� H =∑
i

Hi� (8)

The entropy captures knowledge about the alterna-
tive intuitively: It is maximal when pi = 1/2, in which
case Hi = log 2 = 1 bit. That is, the uncertainty about
design alternatives is maximal when all alternatives

are equally likely to be the solution. Hi = 0 if pi = 0 or
if pi = 1, that is, if it is known precisely whether the
candidate leads to the solution or not. The entropy H
of the entire problem measures the uncertainty of the
entire design. It is jointly concave in the pi and max-
imal at N logN = N bits if all candidates are equally
likely to be the best solution. H = 0 if and only if there
is one candidate k with pk = 1 (and thus, all other can-
didates are eliminated). Using the design problem’s
entropy, we can prove the theorem (see Appendix).
Theorem 2a shows in what way imperfect sequen-

tial testing is more complex than perfect testing. First,
the policy is dynamic—while the assignment of test-
ing candidates to time periods can be done ex ante
for perfect testing, an initially likely candidate may
become unlikely (or vice versa) if probabilities are
updated imperfectly. This is why Theorem 2a pro-
vides a dynamic policy. Second, testing the most likely
candidate in each round remains true in general only
if the fidelity of identifying a winning candidate ���
is at least as high as the fidelity of correct elimina-
tion ���. If � �, it is less error prone to eliminate
a candidate than to declare a winner. In this case, it
may be better to test the second-most likely candi-
date if its probability is closer to 45%, while the most
likely candidate has a probability of close to 55%.
However, this situation applies only in a small part
of the ����� space, and a numerical evaluation of (7)
shows that even here, the efficiency loss from testing
the most likely candidate is small (details are shown
in the proof). Thus, we can conclude that the policy
of always testing the currently most likely candidate
is robust in practice.
We now relax the condition of sequentiality and

allow the simultaneous testing of several design alter-
natives. We exclude multiple simultaneous tests of the
same alternative.3 We assume that the outcome of test-
ing alternative i depends only on its own properties,
but not on any other alternative. The test outcomes
are independent because of simultaneity—no learning
takes place until after a test iteration has been com-
pleted. For parallel imperfect testing of this kind, we
can prove the following result.

3 The situation does not correspond to, for example, consumer focus
groups, where the same design alternative is shown to different
consumers (which would increase the fidelity of the test).

670 Management Science/Vol. 45, No. 5, May 2001



LOCH, TERWIESCH, AND THOMKE
Parallel and Sequential Testing

Theorem 2b. Assume n different design alternatives
are tested simultaneously as described above. It is optimal
to always test the alternatives with the largest probabili-
ties pi. A higher number of parallel tests, n, reduces the
entropy with diminishing returns, and there is an optimal
number of parallel tests. The optimal number of parallel
tests increases when either of the fidelities � or � increases.

Theorem 2b shows that when multiple candidates
are tested in parallel, the policy of always choos-
ing the most likely ones is robust (for one test, we
saw that the second-most likely might be chosen, but
both most likely ones are always included in paral-
lel testing). In addition to the cost ration c/c� from
Theorem 1, Theorem 2b identifies another reason why
parallel testing may be more economical. A higher
testing fidelity enhances the uncertainty reduction
that can be gained from multiple tests. Therefore, the
number of parallel tests that justify their investment c
increases.

5. Testing and the Structure of
Design Hierarchy

A number of researchers have studied the role
of design structure in the innovation process and
have found it to matter significantly (Baldwin and
Clark 1997a, Clark 1985, Marples 1961, Smith and
Eppinger 1997, Simon 1969, Ulrich 1995). More specif-
ically, it has been proposed that designs with smaller
subsystems that can be designed and changed inde-
pendently but function together as whole—a structure
often referred to as modular—can have far-reaching
implications for firm performance, including the
management of product development activities. This
approach was first explored by Alexander (1964) and
was later reinforced by Simon (1969, 1981): “To design
[such] a complex structure, one powerful technique is
to discover viable ways of decomposing it into semi-
independent components corresponding to its many
function parts. The design of each component can
then be carried out with some degree of indepen-
dence of the design of others, since each will affect the
others largely through its function and independently
of the details of the mechanisms that accomplish the
function” (Simon 1969, p. 148). In this section, we will

explore the relationship between design structure and
optimal testing.
A simple search model might capture the testing

process related to one single physical element (PE)
and a single functional element (FE), but in general,
product design is concerned with more complex sys-
tems. The design structure links the product’s various
FEs to its PEs. In the case of an uncoupled design,
each FE is addressed by exactly one PE. In cou-
pled designs, the mapping from FEs to PEs is more
complex.
Consider the two different door designs illustrated

in Figure 4. The design on the left of Figure 4 is uncou-
pled, that is, each FE is addressed by exactly one phys-
ically separate component. Closing is performed by
a handle that moves a blocking barrel (which inserts
into the door frame), and locking is carried out by
turning a key that moves a second barrel. If the design
is uncoupled, each FE is fulfilled by one PE, and each
PE contributes to one FE. We call this separation of
FEs functional independence of the design.4 Designs that
are functionally independent are also called modular
(Ulrich and Eppinger 2000).
The design on the right in Figure 4 is coupled. Clos-

ing is implemented by a doorknob, the turning of
which moves a blocking barrel. Locking is enacted by
a button in the center of the doorknob that blocks
the doorknob from turning. The locking function uses
both physical components, in particular, the same rod
moving the barrel when opening/closing the door is
blocked from moving when locking the door.
The architecture of the product has a fundamen-

tal influence on the testing process. In the case of
functional independence between closing and locking
the door, the corresponding subsystems (PEs) can be
tested independently. If there are three candidates for
the barrel (Figure 4) and two candidates for the lock,
a total of 3+ 2 = 5 tests would cover the total search
space. If, however, the closing and locking are cou-
pled, testing requires a specification of both PEs, clos-
ing barrel and locking barrel. If the outcome of the test

4 In addition to functional dependencies, elements can also depen-
dent on each other because of their physical attributes which
we will refer to as technical dependence. The interdependence
between PEs can be captured in the design structure matrix (DSM)
(Steward 1981, Eppinger et al. 1994).
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Figure 4 Functional Decoupling in the Design of a Door

is negative (FEs were not fulfilled), learning from the
failure is more complex. For example, if the closing
FE was fulfilled, but not the locking FE, the engineer
cannot infer whether she should just change the lock-
ing barrel, or also the closing barrel. An exhaustive
search requires 3∗2= 6 tests.5

An intermediate case between coupled design and
uncoupled design results, if the PEs contributing to
the first FE can be determined without specifying the
PEs contributing to the second FE, but not vice versa.
In this case, we speak of sequential dependence, and it
is possible to test the first PE/FE before addressing
the second.
We see that functional and technical structure influ-

ences testing in two ways. First, it influences the num-
ber of tests required for an exhaustive search (3∗2 vs.
3+ 2 in the door example). Second, it influences the
timing of the tests. If the design is uncoupled, tests
can be done in parallel (without any additional cost).
In the case of sequential dependence, parallel testing
is possible, but only up to a certain level. Coupled

5 Simon (1969) illustrates this point very nicely with the following
example, which was originally supplied by W. Ross Ashby. “Sup-
pose that the task is to open a safe whose lock has 10 dials, each
with 100 possible settings, numbered from 0 to 99. How long will
it take to open the safe by a blind trial-and-error search for the cor-
rect setting? Since there are 10010 possible settings, we may expect
to examine about one half of these, on average, before finding the
correct one �� � � �. Suppose, however, that the safe is defective, so
that a click can be heard when any one dial is turned to the correct
setting. Now each dial can be adjusted independently and does not
need to be touched again while the others are being set. The total
number of settings that have to be tried is only 10×50, or 500.”

designs, however, cause the search space to grow
exponentially without opportunities for parallel test-
ing (other than the parallel testing where the designer
precommits to several prototypes at once). The result-
ing effect of product architecture on testing cost is
analyzed in Theorem 3 below.
For simplicity of exposition, assume a symmetric

situation where each PE has N solution alternatives
of equal probability, and there is one PE for each
of M functional requirements. We consider the three
generic architectures independent (modular), sequen-
tially dependent (any two PEs have an upstream-
downstream relationship), or integrated (each PE
impacts all other PEs). Clearly, most complex systems
include aspects of all three of these categories, but in
the interest of a clear comparison, it is most useful to
analyze them as three distinct types along a spectrum
of structural possibilities.

Theorem 3. Suppose a design has M PEs with N
equally likely solution candidates each, and a test costs c
and takes one time unit costing c� . Then the expected test-
ing costs for the three architectures are (where n�N� =
1/2+√

1/4+2cN/c� from Theorem 1):

Parallel, Sequential,
n�N�= 1 Intermediate n�N�= N(
c
c�

≤ 1
N

) (
1
N
< c
c�
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2

) (
N+1
2 ≤ v c

c�

)
Cmod = c� +NMc ≤Mc�

[
n�N�

M+1 + �n�N �+1��n�N �−2/3�
12

]
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Corollary 2. The testing costs depend on the product
architecture as follows: Cmod < Csequ ≤ Cint .
The theorem shows that in a modular architecture,

the expected testing costs grow sublinearly with the
number of PEs; the costs grow linearly in a sequen-
tially dependent architecture, and they grow exponen-
tially in an integrated architecture. Thus, the theorem
explains that testing effort contributes to the benefits
of a modular product architecture, simplifying the
development process and often leading to lower total
development time and cost. Figure 5 summarizes the
connection between architecture and testing.
The results of Theorem 3 are consistent with simi-

lar propositions in the literature. Ulrich (1995) noted
that for modular architectures, the design of each
module can proceed almost independently and in
parallel. System-level product testing would be lim-
ited to detecting unanticipated interactions, or areas
where the system is not perfectly modular. The result
of our analysis shows this to be true if modularity
can be established in the functional and physical
domains and if there is a direct one-to-one mapping
between functional and physical elements (FEs and
PEs). In such an extreme case of functional and tech-
nical modularity, there is no need for system-level

Figure 5 Impact of Architecture on Testing

testing. However, if there is at least one FE that is
impacted by all PEs, the benefits of modularity are
substantially reduced. In fact, all design alternatives
and their impact on this FE would have to be con-
sidered for testing—a number that would increase
very rapidly as Theorem 3 shows. If designers know
little about functional (customer) elements and their
interactions—not an unusual real-world dilemma—
the value of modularity in testing quickly disappears.
Indeed, as Baldwin and Clark (1997b) have shown,
the presence of many modules can lead to a combina-
torial explosion of testing and experimentation if the
system-level impact on markets (or, in our definition,
on the functional user domain) is highly uncertain.

6. Conclusion
In this paper, we have shown that the extent to which
testing activities are carried out in parallel and series
can have a significant impact on design performance.
Parallel testing has the advantage of proceeding more
rapidly than serial testing but does not take advan-
tage of the potential for learning between tests, thus
resulting in a larger number of tests. We model this
trade-off in the form of a dynamic program and
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derive the optimal testing strategy (or mix of paral-
lel and serial testing) that minimizes both, the total
cost of testing and time. More specifically, our paper
shows three results.
First, the optimal mix of parallel and sequential test-

ing depends on the ratio of testing cost and time: More
expensive tests make sequential testing more econom-
ical. In contrast, slower tests or an increasing opportu-
nity cost of time make parallel testing more attractive
for development managers.
Second, imperfect tests weaken the potential uncer-

tainty reduction of each individual test. A lower test
efficiency reduces the attractiveness of parallel testing.
This is particularly important for managers who con-
sider switching to early and less complete prototypes
and/or the use of less controlled test environments.
Third, the design structure influences to what extent

tests should be carried out in parallel or sequentially.
We show that an important benefit of a modular
product architecture comes from reduced testing cost,
because it allows parallel testing without an increase
in the number of test combinations. Thus, architecture
can be an important lever for decreasing test cost.
As part of our testing model, we were also able

to extend an important search model developed by
Weitzman (1979). Whereas Weitzman studied sequen-
tial search, we included the option of carrying out
search (or, in our case, testing) in parallel. We derived
policies that would not only prescribe an optimal
sequence of search but also inform decisionmakers
about the degree to which such searches should be
carried out in parallel. We expanded our analysis to
include imperfect testing (less uncertainty reduction),
using principles from information theory. Our last
theorem also confirmed that there is an important
relationship between two streams of research (design
structure and testing) that we tried to establish more
formally.
To conclude this paper, we propose three promis-

ing directions for further research that build directly
on the findings presented here. First, it has been
empirically observed that iterative testing can not
only influence development cost and time, but also
the quality of the design solution. It has been found
that less costly and faster iterations through advanced

technologies such as computer simulation can actu-
ally result in more experimentation, leading to novel
solution concepts that could not be reasonably tested
for with slower and more costly technologies. In the
present paper, we have focused on the cost and time
aspects, holding design solution quality constant, but
it is possible to make N , the number of design alterna-
tives tested, an explicit decision variable in our model.
Expanding the search space will increase the testing
costs, but also improve the design quality (possibly
with diminishing returns). This future work relates
our current model to the literature on set-based prod-
uct development (e.g., Sobek et al. 1999).
Second, in the case of sequential dependence, it

might be beneficial to start the testing of the second
module before the testing for the first module has
been finalized, i.e., to overlap the two testing pro-
cesses in the spirit of concurrent engineering (Loch
and Terwiesch 1998). Finding the optimal level of
overlap between tests is thus a second opportunity
for further research.
Third, we have shown learning between tests to be

the primary advantage of sequential testing. In this
paper, we have modeled the consequences of learning
(uncertainty reduction through probability updating),
but have not explicitly taken advantage of what is
known about the different factors that influence learn-
ing. For example, a solution landscape represents the
arena that the designers search to identify a solution
to their problem. The probability of finding a solu-
tion increases as one ascends the “hills” in the land-
scape, and so the designer’s goal is to devise a series
of tests that will enable them to identify and explore
those hills in an efficient manner. The amount that
can be learned between tests then relates directly to
the topography of the landscape. Very little can be
learned by a designer about the direction of her search
if, for example, the solution landscape is absolutely
flat for all combinations except the correct one. In con-
trast, suppose that the solution landscape is a hill with
only a single peak and sides that extend to all edges
of the landscape.6 In such a case a strategy of serial

6 This is the shape, for example, of the value landscape in the chil-
dren’s game in which a child is guided to a particular spot via
feedback from other children who say “warmer” each time a step
is taken towards that spot.
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testing may be the most efficient choice, because the
information gained from each step taken is so useful
in guiding the direction of the next trial step that the
correct solution is often found after only a few trials.
Certainly, knowledge about the topology of solu-

tion landscapes will make sequential testing more
attractive to designers. It is thus not surprising that
well-studied engineering design problems tend to fol-
low more sequential plans than, say, the early search
for drug candidates in a relatively unknown solution
space such as Alzheimer’s disease, even after the cost
and time of each test is accounted for. Some of these
factors that influence learning can be included more
explicitly in our model of parallel and sequential test-
ing and thus provide further leverage in the formula-
tion of optimal testing strategies for superior product
development performance.
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Appendix
Proof of Theorem 1. If the solution is not found within the

set Ai , the next set must be tested, which happens with probabil-
ity �1−∑i

j=1 p�Aj��/�1−
∑i−1
j=1 p�Aj�� (the denominator updates the

probabilities of the remaining sets to sum to 1). Thus, we can write
the total expected search cost as

EC = �A1�c+ c� + �1−p�A1��

×
[
�A2�c+ c� +

1−p�A1�−p�A2�

1−p�A1�

×
[
�A3�c+ c� +

1−p�A1�−p�A2�−p�A3�

1−p�A1�−p�A2�
�· · · �

]]

=
n∑
i=1

[
��Ai�c+ c� �

n∑
j=i
p�Aj�

]
� (A1)

The fact that the design alternatives should be assigned in decreas-
ing order of probability follows from an exchange argument:
Assume that there are two alternatives j ∈ Ai and k ∈ Ai+1 with
pk > pj . Exchange the two (test k before j). The resulting change in
total expected cost is, from (A1), �c� +�Ai+1���pj −pk� < 0. Thus, the
candidates should be assigned as stated.

To simplify exposition, assume from now on that N is suf-
ficiently large and the pi small enough to approximate them
by a continuous distribution function F . Now we transform the
space, considering instead of the set sizes �Ai� their probabilities
ai = F �Ai�−F �Ai−1�, with

∑
i ai = 1. The set sizes ai correspond

to fractions of N . In the transformed space, the solution candi-
dates have a uniform probability density of 1, and the testing

cost becomes Nc because the number of candidates has been com-
pressed from N to 1. We can now state the objective function to be
minimized (where we do not need to treat n as a decision variable
as it is determined by the ai):

Minai

n∑
i=1
�c� +aiNc�

(
1−

i−1∑
j=1
aj

)
(A2)

subject to
∑
j

aj = 1� ai ≥ 0 ∀ i� (A3)

The Lagrangian of this objective function is L = c�
∑
i iai +

Nc
∑
i ai�1−

∑i−1
j=1 aj�− /�1−

∑
i ai�−

∑
i 0iai. The optimality condi-

tions for the Lagrangian are ai�1L/1ai� = 0 ∀ i, 1L/1/ = 0, and
0i�1L/10i�= 0 ∀ i. These, in turn, yield the condition

c�k+Ncak+/= 0 for all k� such that ak > 0� (A4)

Condition (A4), first, implies that the second-order condition is ful-
filled (differentiating it with respect to ak gives Nc > 0, so the solu-
tion found is a cost minimum). Second, (A4) implies that the sets ak
are decreasing in size over k, so the first n∗ sets are nonempty, and
then no more candidates are assigned. Adding Equation (A4) over
all k and considering that

∑
k ak = 1 allows determining /, and sub-

stituting in / yields the optimal set probability (2). Finally, when
the set probabilities are known, we can use the fact that an∗ > 0
and an∗+1 ≤ 0 to calculate the optimal number of sets described in
Equation (1). If n∗ ≥ N , then every solution candidate is tested by
itself, which yields the largest number of sets possible.

Proof of Theorem 2a. We prove the theorem in three steps.
Step 1. Proxy Problem of Entropy Reduction. One-step entropy mini-

mization. As the immediate reward in the dynamic program −�c+
c� � is constant, the problem is to minimize the expected number of
steps to go from the initial state to V = 0 (Bertsekas 1995, p. 300).
Consider the proxy problem of minimizing the number of steps to
go from H�p� (uniquely determined by p) to some target entropy
H0. After testing design alternative i, we can write the posterior
entropy as (where “xi = a” is abbreviated as “a”):

Hpost = −1
2

{
�1+��pi log

(
�1+��pi

1−�+ ��+��pi

)

+ ∑
j 
=i
�1−��pj log

(
�1−��pj

1−�+ ��+��pi

)

+ �1−��pi log
(

�1−��pi
1+�− ��+��pi

)

+ ∑
j 
=i
�1−��pj log

(
�1+��pj

1+�− ��+��pi

)}
(A5)

= H�p�+ 1
2
pif ���+ �1−pi�f ���
−f ���− ��+��pi���� (A6)

where f �2� = −�1+2� log�1+2�− �1−2� log�1−2� for 2 ∈ �0�1�. It
can easily be shown that f ′�2� < 0 and f ′′�2� < 0. We can thus cal-
culate the first and second derivatives of Hpost as a function of pi ,
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which shows that this function is convex. Thus, the FOC charac-
terizes a minimum for the posterior entropy, yielding Equation (7).
p∗ in (7) is a function of � and � only; it increases in � and decreases
in �. Whenever �=�, p∗ = 1/2; moreover, the range of p∗ is between
0.411 when �����= �0�01�0�99� and 0.59 when �����= �0�99�0�01�.
The largest one-step entropy reduction is produced by choosing
the pi closest to p∗. When p∗ = 1/2, this is equivalent to pi being
the largest: If all pj ≤ 1/2, this is true trivially. If one pk > 1/2, then
pk−1/2= 1/2−∑

j 
=k pj which implies that pk is closer to 1/2 than all
the pj . If � �, it is possible that the second-most-likely candidate
should be tested: Suppose p∗ = 0�411, p1 ≥ 0�42, and p2 = 0�41. Then
p2 yields the larger entropy reduction. Note that the third-largest
pk must be smaller than 0.17; that is, the deviation from “test the
most likely” is only relevant in special cases where two candidates
dominate and are about equally likely.
Step 2. Optimal Stationary Policy in Proxy. To establish optimal-

ity, we examine the expected two-step entropy reduction assum-
ing that candidates i and then k are tested, while j 
= i� k refers
to all remaining candidates. Four cases result, of the test signals
being �1�1�� �1�0�� �0�1�, and �0�0�. Because of renormalization, the
updated probabilities are arithmetically messy, and we leave them
to the reader (or they can be obtained from the authors). The result-
ing two-step posterior entropy Hpost2 becomes:

− 1
4

{
�1−���1+��pi log

[
�1−���1+��pi

A

]

+�1−���1+��pk log
[
�1−���1+��pk

A

]
+∑

j

�1−��pj

× log
[
�1−��2pj
A

]
+ �1+���1+��pi log

[
�1+���1+��pi

B

]

+�1−���1−��pk log
[
�1−���1−��pk

B

]

+∑
j

�1+���1−��pj log
[
�1+���1−��pj

B

]

+�1−���1−��pi log
[
�1−���1−��pi

C

]

+�1+���1+��pk log
[
�1+���1+��pk

C

]

+∑
j

�1+���1−��pj log
[
�1+���1−��pj

C

]

+�1+���1−��pi log
[
�1+���1−��pi

D

]

+�1+���1−��pk log
[
�1+���1−��pk

D

]

+∑
j

�1+��2pj log
[
�1+��2pj
A

]}
� (A7)

where A = �1 − ���1 − � + �� + ���pi + pk�; B = �1 − ���1 + �� +
�� + ����1+ ��pi− �1− ��pk�; C = B with i and k exchanged, and
D = �1+���1+�− ��+���pi+ pk��. Inspection shows that Hpost2 is

the same when the order of testing i and k is exchanged. By induc-
tion, this implies that any order of testing a given collection of can-
didates gives in expectation the same posterior entropy. Step 1 and
Step 2 together imply that it is optimal for the entropy proxy prob-
lem to test the pi that is closest to p∗ in all rounds.
Step 3. Optimality for the Dynamic Program. Set a target entropy

that is more stringent than reaching V = 0, for example,
H0 =−� log�− �1−�� log�1−��. Stop whenever one pk reaches
�1−��. As the policy derived in Steps 1 and 2 is optimal for any
target entropy is also optimal when the entropy at this moment is
used as a target. �

Proof of Theorem 2b. When we test design alternatives
i = 1� � � � �n in parallel, our independence assumption implies that
test outcome xi is determined by (3), no matter what the other alter-
natives and tests are. Consider an arbitrary profile of test signals
�x1� � � � � xn�, where k is the number of tests that give a positive sig-
nal, n−k is the number of tests that give a negative signal. Recall
that it is impossible that more than one of the alternatives is in fact
the right one. The marginal probability of the profile x is:

Pr(x)= �1−��
k�1+��n−k
2n

R�x�� (A8)

where R�x� = 1+ �� +����∑l6xl=1 pl�/�1−��− �
∑
m6xm=0 pm�/�1+���.

The posterior probabilities follow.

pi�x 6 xi = 1� = �1+��pi
�1−��R�x� �

pi�x 6 xi = 0� = �1−��pi
�1+��R�x� �

(A9)

pj�x 6 j not tested�=
pj
R�x�

� (A10)

Denote with x�k� a profile with k positive signals. There are
(
n
k

)
different such profiles. The posterior entropy from testing n candi-
dates is:

Hpost�n� = −
n∑
k=0

�1−��k�1+��n−k
2n

×
{ n∑
i=1

[ ∑
x�k�6xi=1

1+�
1−�pi log

[
�1+��pi

�1−��R�x�k��
]

+ ∑
x�k�6xi=0

1−�
1+�pi log

[
�1−��pi

�1+��R�x�k��
]]

+ ∑
j

∑
x�k�

pj log
[
pj

R�x�k�

]}
� (A11)

Because of the independence of the individual test outcomes, it is
optimal for the �l+1�st test candidate, given that l < n candidates
are already chosen, to be closest to p∗ (among the remaining candi-
dates). As we have seen in Theorem 2a that p∗ always implies that
one of the two most likely candidates to be chosen first, and the
second only when both are close to 1/2, it is optimal to test the n
most likely candidates when n≥ 2.

So far, we have taken n as given. Now consider the dynamic
program of the entropy proxy problem, given the optimal policy
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for any n 6 V �H� = minn�nc+ c� +V�Hpost�n��� holding n constant
at the chosen value from now on. Observe that a larger � and �
each by itself reduces the posterior entropy Hpost�n� (both spread
the arguments of the log functions). In addition, a larger num-
ber of parallel tests decreases Hpost�n� convexly. We can show that
1
2 �Hpost�n�+Hpost�n+ 2�� > Hpost�n+ 1�. The proofs of these state-
ments are messy and omitted here (they can be obtained from the
authors). We can show that V�Hpost�n�� is increasing in Hpost�n�.
Thus, convexity of Hpost�n� together with the linear direct cost cn
implies that there is a unique n∗. When we approximate Hpost�n� by
a continuous function in n, the implicit function theorem implies

1n∗

1�
=− 1

2Hpost�n�/�1�1n�

12Hn/1n2
≥ 0�

and the same holds for �. n∗ increases weakly in the fidelities
because it is integer.

Finally, as in Theorem 2a, this result holds for any target entropy
H0. We can thus condition on any future state p (for example,
the next time we want to change n), set H0 as the correspond-
ing entropy level, and apply the optimal n until then. Thus, the
theorem holds also for the original dynamic program. This proves
the theorem. �

Proof of Theorem 3. We first calculate an upper limit on Cmod .
As the M independent PEs can be tested in parallel, the costs of
the tests simply add up. The time to test each PE is a random
variable that can vary between 1 (first batch contains the solution)
and n�N� (last batch contains the solution). The expected time to
test M PEs in parallel is the expectation of the maximum of these
random variables. The expectation of the maximum of M inde-
pendent uniformly distributed random variables is �M/�M + 1��n.
From Corollary 1, the testing time distribution is skewed to the left:
Expected testing time is �n�N �+ 1�/3. Thus, the expectation of the
maximum is smaller than for a uniform distribution. The test costs
simply add up for theM PEs. This gives the bound on the total cost
in the middle column. The extreme cases for parallel and sequential
testing (left and right columns) follow directly from Corollary 1.

For estimating Csequ, assume first that the M PEs are tested
sequentially, upstream before downstream. Then the total costs sim-
ply add up, both in time and in the number of tests, which gives
the middle row of the theorem. Columns 1 and 3 are trivially larger
than the corresponding Cmod . The middle column is larger than
Cmod for any n because n/�M +1� < �n+1�/3. It may be possible to
reduce Csequ by testing an upstream and a downstream PE in an
overlapped manner. The best that can be achieved by overlapping
is Cmod , provided that downstream picks the correct upstream alter-
native as the assumed solution and tests only its own alternatives
compatible with this assumed upstream solution. The overlapped
cost is larger than Cmod in expectation. This proves the comparison
statement in Corollary 2.

Finally, we estimate Cint . In the integral case, the solution of one
PE depends on the solutions of the others, and therefore, all com-
binations of alternatives must be tested. This is equivalent to one
PE with NM alternatives. This gives the third row of the theorem.
The conditions for the extreme cases (parallel or sequential testing)

change because the number of alternatives is now different; a PE of
N candidates may be tested sequentially, while it may be optimal
to test partially in parallel in the PE of NM candidates.

Inspection shows that for 2cNM/c� large, Cint > Csequ. Numerical
analyses show that Cint > Csequ for all possible parameter constella-
tions as long as 3/8N ≤ c/c� holds (see Corollary 1). When delay
costs are so high that this condition is not fulfilled, tests are per-
formed in parallel (Corollary 1), and the total costs of testing mul-
tiple PEs become the same in both cases.1 Again, Cmod is smallest,
and Cint > Csequ iff c/c� > �M − 1�/�N �NM−1 −M��. If c/c� is even
smaller, it is optimal to test sequentially dependent PEs in parallel,
incurring the extra cost of testing all combinations of alternatives
in order to gain time. In this extreme case, Cint = Csequ. This proves
Theorem 3 and Corollary 2. �
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