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In an innovation contest, a firm (the seeker) facing an innovation-related problem (e.g., a technical R&D
problem) posts this problem to a population of independent agents (the solvers) and then provides an award

to the agent that generated the best solution. In this paper, we analyze the interaction between a seeker and a
set of solvers. Prior research in economics suggests that having many solvers work on an innovation problem
will lead to a lower equilibrium effort for each solver, which is undesirable from the perspective of the seeker.
In contrast, we establish that the seeker can benefit from a larger solver population because he obtains a more
diverse set of solutions, which mitigates and sometimes outweighs the effect of the solvers’ underinvestment in
effort. We demonstrate that the inefficiency of the innovation contest resulting from the solvers’ underinvestment
can further be reduced by changing the award structure from a fixed-price award to a performance-contingent
award. Finally, we compare the quality of the solutions and seeker profits with the case of an internal innovation
process. This allows us to predict which types of products and which cost structures will be the most likely to
benefit from the contest approach to innovation.
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1. Introduction
Innovation is at the heart of every R&D process. The
detailed mechanics of R&D differ widely by industry,
reflecting different cost structures, different success
rates, and different market rewards, but the innova-
tion process is remarkably similar across industries.
Drug candidates in a pharmaceutical development
process, TV shows in an entertainment company, and
proposals in a venture capital firm all flow through a
conceptually similar innovation process. This process
starts with the creation of many innovation opportu-
nities that are then evaluated in a filtering step that
selects the most promising opportunity from among
the candidates.
Typically, the creation of opportunities, as well as

the selection from among the opportunities, happens
inside an innovating firm. Inputs from various func-
tions create new opportunities that are then selected
based on input from R&D, marketing, and general
management. However, there exist a rapidly grow-
ing number of innovation processes that rely on the
outside world to create opportunities and then select
the best from among these alternatives for further
development. This approach is often referred to as

open innovation (Chesbrough 2003, von Hippel 2005,
Terwiesch and Ulrich 2008).
Open innovation initiatives often rely on the altru-

ism of its community members, their desire to com-
pete for status within the community (Loch et al.
2000), or their self-interest, reflecting their role as a
user of the innovation (von Hippel 2005). A remark-
able exception to such nonfinancial motives is the
innovation contest. In an innovation contest, also
known as an innovation tournament, many indi-
viduals or teams submit plans or prototypes to an
innovating firm. Examples of innovation contests are
QVC’s product road show (an opportunity for inven-
tors to showcase their ideas and potentially get them
included in QVC’s assortment), the DARPA Grand
Challenge for autonomous robotic vehicles (an open
competition in which inventors can enter to win a
substantial amount of money if their innovation out-
performs others concerning speed, range, or ability to
conquer difficult terrain), and the recently launched
TV casting show “The Million Dollar Idea” (see Ulrich
2008).
Despite attracting a significant media attention, the

importance of these innovation contests has been
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rather small relative to the traditional innovation pro-
cess. However, this is currently changing. With a
growing trend toward outsourcing and off-shoring
innovation-related activities (see Anderson et al. 2006,
Eppinger and Chitkara 2006), innovation contests and
their applications have expanded from creating crazy
concepts to solid R&D problem solving in the recent
years.
Consider the case of InnoCentive, a company that

acts as an intermediary and executes hundreds of
innovation contests every year for its clients. At
InnoCentive, scientists can register and express what
type of scientific problems they are interested in
(most of them are in the areas of molecular biology
and chemistry). InnoCentive acts as an intermediary
between these scientists (also known as solvers) and
those—typically, a large firms’s R&D organizations—
that encounter technical or scientific problems as part
of their R&D process (also known as seekers). Inno-
Centive works with seekers to formulate a statement
describing the problem and the rules of the innova-
tion tournament.1 Such a statement is made accessible
to a pool of 95,000 solvers from around the world.
Depending on their availability and interest, a sub-
set of those will start working on the problem and
an even smaller subset will actually submit a solu-
tion. InnoCentive will provide these solutions to the
seeker, who can decide if the solution is useful to him.
If it is, the seeker can acquire the intellectual property
from the solver; typical rewards are between $10 k
and $50 k.
Just like in the case of innovation contests executed

by DARPA or QVC, the seeking firm obtains several
benefits from this form of innovation: (a) it induces
competition among solvers; (b) the seeker only pays
for successful innovations, but not for the failures (the
associated risks of failures are shifted to the solver);
(c) the seeker gains access to a broad pool of solvers
so problems are solved by those who have the most
relevant expertise; (d) there exists an opportunity of
wage-rate arbitrage or, more generally, cost savings;
(e) there is an increase in the capacity of idea genera-
tion and testing.
These potential benefits have led companies with

a long R&D tradition, such as Ely Lilly or DuPont,
to use InnoCentive’s innovation tournaments for a
growing portion of their R&D work. InnoCentive’s
business model of innovation has been praised in the
business press (Taylor 2006, Hempel 2006, Huston
and Sakkab 2006) and has received several innovation

1 To use an innovation contest as studied in this paper, the seeker
has to be able to provide a clear description of the problem. If the
problem is highly complex with ill-defined interfaces, it is not suit-
able for an innovation contest because the resulting coordination
costs would be too high (e.g., Ulrich and Ellison 1999, Novak and
Eppinger 2001, Mihm et al. 2003).

awards (including the “Business Process Award” from
the Economist’s Innovation Summit and the “Infosys
Transformation Award” from The Wharton School).
Despite this growing popularity, little remains

known about when such innovation contests should
be used and how innovation contests should be
executed. In the absence of appropriately designed
contracts (rules of the tournament), any form of a
decentralized system will lead to inefficiencies reflect-
ing information and incentive problems. Our research
questions aim to address these problems:
• What type of innovation problems are most

suited to be solved by innovation contests and what
problems are better solved internally?
• For a given type of innovation problem, what is

the optimal design of the innovation contest? Specif-
ically, what is the optimal award, and how many
solvers should the seeker attempt to reach?
Providing answers to these questions is the con-

tribution of this paper. We combine prior research
from the field of contests and tournaments (e.g.,
Moldovanu and Sela 2001) with models of product
development and search (e.g., Dahan and Mendelson
2001, Terwiesch and Loch 2004). We provide the fol-
lowing novel results. First, we derive the optimal
innovation contest award mechanism (Theorem 1A)
and show how the quality of the submissions and
the profits for the seeker depend on the number of
potential solvers (Theorem 1B). Having many solvers
work on an innovation problem will lead to a lower
equilibrium effort for each solver, which is undesir-
able from the perspective of the seeker. Although
prior economics research has argued that it is opti-
mal to restrict the number of participants to reduce
this effect, we derive an additional benefit of hav-
ing a large pool of solvers: the seeker can benefit
from a larger solver population because he obtains
a more diverse set of solutions, which mitigates and
sometimes outweighs the effect of underinvestment
from each solver (Theorem 1C). Second, the ineffi-
ciency of the innovation contest resulting from the
solvers’ underinvestment can be further reduced by
changing the award structure of the innovation con-
test. Whereas prior research has advocated the use
of fixed-price rewards, we show that a performance-
contingent award can lead to better solutions, higher
seeker-profits, and system efficiency (Theorem 2).
Third, we compare innovation contests hosted by the
seeker and by an intermediary with the case of an
internal innovation process (Theorems 3A and 3B).
This allows us to predict which types of products
and which cost structures will be the most likely
to benefit from the contest approach to innovation.
We also show that the seeker primarily benefits from
open innovation by obtaining higher performance
and not only by obtaining lower costs. These results,
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we believe, are of interest to firms executing inno-
vation contests as well as those participating or con-
sidering to participate as either seeker or solver.
Moreover, in light of the ongoing discussions con-
cerning the off-shoring of R&D work, we believe
that our results should also be of interest to a much
broader audience.
The remainder of this article is organized as fol-

lows. We first review the relevant literature (§2),2

followed by the development of our modeling frame-
work (§3). Sections 4–6 establish our main results
(Theorems 1–3), and §7 concludes the paper.

2. Relevant Literature
Our model, presented in §3, combines research on
product development processes with research on the
economics of contests and tournaments. Over the last
15 years, a number of product development pro-
cess models were created (e.g., Krishnan and Ulrich
2001, Loch and Kavadias 2007). Although the detailed
mathematics of the various models differ, they collec-
tively suggest (a) that product development should
be modeled as a stochastic process and (b) that
there exist different types of product development
problems.
The stochastic aspect of the product development

process has been modeled as a search process in an
array of binary variables (Loch et al. 2001), sequential
draws from a distribution (Terwiesch and Loch 2004,
based on work by Weitzman 1979), parallel draws
from a distribution (Dahan and Mendelson 2001,
based on an application of extreme value models), or
a series of Bernoulli trials (e.g., Ha and Porteus 1995).
Our model applies the previous work by Dahan and
Mendelson in that we view the innovations under-
taken by one solver as a set of parallel experiments.
The performance outcome of this experimentation is
the highest realization of the parallel draws (i.e., the
nth order statistics or the extreme value model). This
corresponds to a single-period model, where a solver
makes the decision on how much to experiment only
once.
One of the major accomplishments of the prior

product development literature has been to demon-
strate that the type of product development prob-
lem matters greatly and should influence the process
of searching for an optimal solution. Problem types
differ along multiple dimensions, including (a) the
amount of uncertainty in the overall pay-off function,
and hence the solver’s ability to predict the outcome
of an experiment; and (b) the ability of the solver
to learn from one experiment to another. Loch et al.

2 An extended literature review is provided in the electronic
companion, which is available as part of the online version that can
be found at http://mansci.journal.informs.org/.

(2006) discuss different problem types and their impli-
cations for managing the associated risks.
The second stream of research that we draw from

relates to the design of contests and tournaments (e.g.,
Glazer and Hassin 1988, Lazear and Rosen 1981). This
research has a long tradition in economics and has
recently seen a number of applications in operations
management (e.g., Deng and Elmaghraby 2005) and
marketing, especially in the salesforce domain (e.g.,
Kalra and Shi 2001, Chen and Xiao 2005). There exist,
however, two crucial differences between a salesforce
contest and an innovation contest. First, the seeker
in an innovation contest is interested in maximizing
the value of the highest performance outcome. The
seeker in a salesforce contest, in contrast, is interested
in maximizing the sum across all outcomes. Put dif-
ferently, an R&D department prefers 100 bad ideas
and 1 outstanding idea over 101 good ideas, whereas
a marketing department prefers 101 salespeople with
good revenues over 100 salespeople with bad rev-
enues and 1 salesperson with outstanding revenue.
Second, participation decisions for solvers are fully
voluntary in an innovation contest, whereas salespeo-
ple are forced to participate in a salesforce contest.
There exists a small set of papers in the economics

literature that have applied contests and tourna-
ments to R&D settings. Taylor (1995) and Fullerton
and McAfee (1999) study the optimal design of
research tournaments with a sequential stochastic
model. These papers focus on the competition among
symmetric solvers: the seeker benefits from buyer
power as the solvers are competing against each other.
They find that the contest suffers from underinvest-
ment in effort by the solvers. To mitigate this effect,
these models suggest limiting the pool of solvers,
potentially all the way down to two (Fullerton and
McAfee 1999). A two-solver contest is sufficient to
induce competition while leaving a 50% probability
of winning to two symmetric firms.

3. Model Development
We consider an innovation problem in which the
performance of the solution can be measured in a
one-dimensional space. The assumption of a one-
dimensional performance measure is common in
product development. This one-dimensional space
could reflect a technical specification (e.g., the purity
of a material obtained in a chemical reaction) or a con-
sumer’s utility measure (e.g., the expressed purchase
intent). Similar one-dimensional settings are consid-
ered by Dahan and Mendelson (2001) and Terwiesch
and Loch (2004).
The performance obtained from a solver is driven

by three variables. First, each solver i is endowed with
an expertise, �i, which is a measure of his experience
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and knowledge for a particular problem. For example,
everything else being equal, the solution to a chemical
engineering contest is more likely to be found by a
chemist than by a biologist. This endowed knowledge
is available to the solver at no cost.
Second, each solver can enhance the performance

of his solution(s) by investing improvement effort, ei.
Such improvement effort corresponds, for example,
to conducting a thorough patent search and litera-
ture review, or to implementing rigorous quality con-
trol systems with high standards. Effort ei leads to a
deterministic improvement r�ei� of the performance
of the solution, where r�ei� is an increasing and con-
cave function in ei that measures the performance
return on the improvement effort. Let c1ei be the costs
associated with the improvement effort of solver i.
Third, problem solving in innovation is often

stochastic, which we capture by adding a noise vari-
able, 	, to the performance. Given this uncertain per-
formance, the solver will most likely engage in a
search process by conducting a set of trials and ex-
periments (see, e.g., Loch et al. 2001, Dahan and
Mendelson 2001). Let mi be the number of experi-
ments conducted by solver i. The results of an exper-
iment are captured by the multiple realizations of the
random variable, 	. Following the work by Dahan
and Mendelson (2001), we consider the specific case
in which the random noise 	 is an independent
and identically-distributed Gumbel random variable
with mean zero and scale parameter �. Note that a
higher � increases the variance of a draw. The associ-
ated costs are c2mi.
Given an expertise, �i, an improvement effort, ei,

and an experimentation effort, mi, the performance of
the solution is assumed to be of the following additive
form:3

vi��i eimi 	i�

=max
j

�vij = �i + r�ei�+ 	ij j = 12 � � � mi�� (1)

Note that our performance function, shown in, (1)
is rather general, because it includes a baseline per-
formance, a deterministic reward for effort, and a
stochastic reward for effort.
The above general performance function nicely

blends two important features of an innovation
project: heterogeneity in solver expertise (i.e., different
solvers have different �is) and a stochastic relation-
ship between efforts and performance. Unfortunately,

3 Of course, more complex functional forms could be considered.
A purely multiplicative form could be converted into an additive
form by taking logarithms and then appropriately rescaling the cost
functions. A mixture of additive and multiplicative terms (e.g., an
interaction term between expertise and deterministic effort) could
also be analyzed, but certainly would require numerical solutions.

the analytical tractability of such a general perfor-
mance function is quite limited. For this reason, we
decompose the general performance function (1) into
three interesting and tractable special cases based on
which of the three terms dominates.
Expertise-based projects (	ij = 0) have no stochastic

influence of the random noise, and thus experimenta-
tion is not necessary. Performance is driven by exper-
tise and improvement effort. Thus,

vi��i ei�= �i + r�ei��

Such projects are low-risk projects with little nov-
elty in them, such as converting a computer-aided
design drawing into another format or designing a
process recipe for a commonly used chemical reac-
tion. This type of concave, deterministic performance
function is used in some of the work on software
development contracting (e.g., Whang 1992). Solvers
are heterogeneous in their expertise. We assume that
both the seeker and the solvers have identical beliefs
that �i is distributed across solvers with cumulative
density function F ��� and probability density func-
tion f ���. It could be possible that an expert or a
solver with higher expertise has better information
on the distribution of a competitors’ expertise level.
We leave that case for future research. We will use
a Gumbel distribution with scale parameter � as a
special case for F to illustrate some results in the
paper. Thus, the expertise-based project is essentially
an auction model with vi��i ei� as a solver i’s bid.
Although the performance is certain for a solver, a
seeker still faces uncertainty with respect to the per-
formance of the best solution obtained from a pool
of external solvers because of the heterogeneity in
endowed solver expertise.
Ideation projects (�i = �mi = 1) are broad and

nondetailed innovation problems for which the seeker
looks for novel ideas. For example, recent InnoCen-
tive challenges included “a product concept for a
child-proof container of medication” or “the design of
the next generation binder.” Other examples of such
projects include design contests for the aesthetics of a
new building or the logo for an event such as the FIFA
world cup. In these projects, the seeker’s taste, which
is uncertain for the solver, plays an important role in
determining what constitutes a good solution. Hence,
in an ideation project, the performance of a solution
has a significant noise term that reflects heterogeneity
of solvers’ solutions in matching the seeker’s taste. All
solvers are identical in terms of endowed expertise,
i.e., �i = �j = � for all i and j , that is, all solvers are
equally capable for such a broad problem ex ante. As
before, solvers can spend effort to increase the quality
of their solution (e.g., by building a sophisticated pro-
totype of their idea as opposed to simply submitting a
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sketch on paper). Because the noise term will emerge
after the seeker reviews all submitted solutions, there
is no point for solvers to invest in experimentation. In
this case, the performance of a solution is

vi�ei 	i�= �+ r�ei�+ 	i�

Trial-and-error projects (�i = �e = 0) are innova-
tion problems with an extremely rugged solution
landscape. The solver cannot anticipate the perfor-
mance of a solution before actually conducting the
experiment. However, unlike for ideation problems,
the solver can observe the performance of a trial
before submitting a solution. Thus, the uncertainty
the solver faces is entirely technical in its nature.
Given the ruggedness of the solution landscape, every
experiment conducted has the same expected perfor-
mance, i.e., �i = �j = � for all i and j . Performance is
driven by the experimentation effort, and there exists
no learning from one round of experimentation to
the other. The solver exerts effort by experimenting
(which increases the performance of the best solution
stochastically), and there exists no way of obtaining
a deterministic return to effort. This case is equiva-
lent to the model presented by Dahan and Mendelson
(2001):

vi�mi 	i�=max
j

�vij = �+ 	ij j = 12 � � � mi��

Table 1 summarizes the characteristics, mathematical
representations, and examples of these three project
types. Figure 1 separates the uncertainty faced by the
solver into a technical uncertainty dimension and a
market uncertainty dimension.
Given the project type, the seeker faces two deci-

sions. First, the seeker needs to decide if the prob-
lem should be solved internally or whether it should
be posted to a broader community in the form of

Table 1 Summary of the Characteristics, Mathematical Representations, and Examples of Expertise-Based Projects, Ideation Projects, and
Trial-and-Error Projects

Project type Characteristics of the project Action taken by solver Variables determining performance

Expertise-based project Engineering tasks with no uncertainty Invest effort to enhance the existing  Endowed expertise  (�i )
in performance function (well-behaved expertise relevant to the project Effort (e)

 solution landscape) vi ��i � ei �= �i + r �ei �

Example: Modify an existing process
design to fit a new production site

Ideation project Innovative problems with no clear Invest effort to create the best Effort (e)
specifications, leading to uncertainty possible presentation Subjective taste of seeker (market uncertainty)
in the performance function vi �ei � 	i �= �+ r �ei �+ 	i

Example: Design next-generation binder

Trial-and-error project Solutions  to  research problems with Experiment by trying out many Number of experiments (m)
well-defined goals, yet highly rugged solutions and then picking the Outcome of each trial
solution landscapes, creating uncertainty one with the highest (technical uncertainty)
in how to improve a solution performance vi �mi � 	i �= max

j
�vij = �+ 	ij � j = 1�2�    �mi�

Example: A pill that reduces grey hair

Figure 1 The Exposures of Different Project Types to Technical
Uncertainty and Market Uncertainty

Low

Low

High

High Trial-and-error
project

Expertise-
based
project

Ideation
project

Market uncertainty
(“will the seeker like it?”)

Technical uncertainty
(“will it work?”)

an innovation contest. If the problem is solved inter-
nally, the seeker needs to decide upon the two types
of effort defined above.
If the problem is posted to a broader community,

the general sequence of events is as follows. The
seeker needs to determine an award allocation mech-
anism. This mechanism is announced (together with
the problem) to all solvers. Each solver i has a pri-
vately known expertise of �i for the problem. Solvers
are risk neutral and face three types of costs: the costs
of improvement effort (c1ei), the costs of experimen-
tation (c2mi), and a fixed cost of participation cf if the
solver elects to work on the problem. Given solver
i’s efforts (eimi) the performance of her best solu-
tion, vi, is determined according to Equation (1) and
the solution is submitted to the seeker.
Based on the performance vector of submitted

solutions from n solvers, v = �v1v2 � � �  vn�, the
seeker awards the solvers according to the announced
mechanism. We assume the seeker’s payoff to be a
weighted combination of the performance of the best
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solution and the expected average performance of all
solutions:

V = � max
i=1���n

�vi�+ �1−��

∑
i=1���n vi

n


where 0 ≤ � ≤ 1. This formulation includes the spe-
cial case in which the seeker is only concerned about
the value of the best solution (� = 1). However, it
also lets us explore the case in which the seeker cares
about the overall quality of the submitted solutions.
For example, the solver might benefit from combina-
tions of the submitted solutions, and therefore favor
a high average solution quality. In the extreme case,
the solver might only care about the average submit-
ted solution quality (� = 0). This captures the case of
the traditional salesforce contest (see, e.g., Chen and
Xiao 2005) or a contest in which the seeker obtains
a (potentially negative) payoff for every submitted
solution, as is the case in television contests such as
American Idol.4

Following the common settings in the contest liter-
ature, all parameters including �, n, the performance
function, the return function on effort, the distribu-
tion of solver expertise, and costs are common knowl-
edge to both the seeker and solvers,5 except a solver’s
expertise in an expertise-based project that is known
to that solver only. In addition, solvers’ efforts are
not observable and verifiable to the seeker. The seeker
attempts to maximize the expected payoff, V , net of
the costs of the award and the cost of internal devel-
opment effort (note that one of the two is zero). Each
solver attempts to maximize the expected net profit
consisting of the expected award minus the costs of
effort.

4. Open Innovation with
Fixed-Price Contest

In a fixed-price contest, the seeker announces a
prespecified award with a fixed amount, A, which
will be granted to solvers according to a prean-
nounced award allocation structure. The fixed-price

4 There exist other functional forms that could capture the seeker’s
interest in more than the optimal solution. Specifically, it seems
plausible that the seeker might be interested in the best m submit-
ted solutions. These cases lead to qualitatively similar results, yet
are analytically intractable.
5 These assumptions are common in the literature on auctions and
contests (e.g., Snir and Hitt 2003 use very similar assumptions).
As are all assumptions, they are a simplification of the real world,
made out of analytical convenience rather than based on empirical
observations. For example, in reality, the exact n will not be known
to all parties. The seeker could obtain an estimate of n from Inno-
Centive. The solvers, however, will have some prior distribution
concerning n, which leads to a rational expectation about n. As
long as solvers have symmetric priors, we get to the same results
that we have now (although the model would be more complex).

contest is the most commonly adopted mechanism in
open innovation systems and is the standard contest
used by InnoCentive. Theorem 1A shows that instead
of splitting a predetermined total award amount into
two smaller awards, it is optimal to allocate the entire
award to the best solution. All proofs are provided in
the online appendix (provided in the e-companion).

Theorem 1A. For a given amount of award A, assume
that the seeker can allocate it to at most two solvers, with
A1 ≥ A2 ≥ 0 and A1 +A2 = A. For ideation projects and
trial-and-error projects, it is optimal for the seeker to grant
the entire award to the solver with the best solution (i.e.,
A1 =A and A2 = 0), although it may or may not be opti-
mal for the seeker to do so for expertise-based projects.

The above theorem establishes the optimality of the
winner-takes-all award structure for an open innova-
tion contest with risk-neutral seeker and solvers. For
ideation projects and trial-and-error projects, because
solvers are symmetric in endowed expertise, they
react to award structures symmetrically. When the
solvers are risk neutral, the marginal incentive gener-
ated by one more dollar of award for the first prize
is higher than the marginal incentives generated by
one more dollar of award for one of the lower prizes.
As a result, concentrating the award on the first
prize will generate the strongest incentives for solvers
to exert efforts. For expertise-based projects, because
solvers have different endowed expertise, they react
differently to reward structures. A winner-takes-all
award structure offers stronger incentive to solvers
with high endowed expertise to exert effort because
they are more likely to win the single award, whereas
a multiple-prize award structure is more attractive
to solvers with low endowed expertise because they
have not much chance to win the first prize. There-
fore, whether a winner-takes-all award is optimal
depends on the distribution of the solver expertise.
In the proof of the theorem, we derive a mild, neces-
sary, and sufficient condition for the winner-takes-all
contest to be optimal for expertise-based projects. We
will focus on the analysis of the winner-takes-all con-
test in this paper.
In a winner-takes-all contest, observing the seeker’s

award A, the n solvers simultaneously make partici-
pation and effort decisions to ensure that the expected
profit they could earn from entering the contest is
at least cf (i.e., a solver’s reservation profit is zero).
Each participating solver submits his (best) solu-
tion to the seeker for review. The solver who pro-
duced the best solution among all n solvers will win
the award A, whereas all other solvers will not be
awarded anything.
Consider a solver i with endowed expertise �i.

Observing the seeker’s award A and his own exper-
tise �i, solver i needs to decide how much improve-
ment effort, ei, to exert (leading to cost c1ei) and the
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number of experiments, mi, to conduct (leading to
cost c2mi). Following the existing literature on con-
tests, we focus on a symmetric equilibrium through-
out the paper. Thus, in determining the effort level,
solver i solves

max
ei≥0mi≥1

�i�eimi � nem�

= �i

(
APr�solver i wins�− c1ei − c2mi − cf

)
= �i

(
APr�vi��i eimi 	i�

>max�vj��j em	j� j �= i and �j = 1��

− c1ei − c2mi − cf

)


where �i = 0 if solver i decides not to participate and
�i = 1 otherwise. Let � ∗�A�= ��∗�A� e∗�A�m∗�A�� be
the solvers’ equilibrium strategy for a given award A.
We can then write the seeker’s problem as

max
A≥0

��A �n� ∗�A��

=�max��∗
k�A�vk��ke

∗�A�m∗�A�	k� k=12���n�

+�1−��

(∑
k�

∗
k�A�vk��ke

∗�A�m∗�A�	k�

n

)
−A�

For the resulting equilibrium with given number of
solvers n, Theorem 1B establishes for each of the three
project types the solver entry pattern, the amount of
prize the seeker awards, the amount of effort that each
solver exerts, and the expected profit the seeker earns.
For the solver entry pattern, Theorem 1B derives
the expected number of participating solvers in a
free-entry fixed-price contest, ne∗ for expertise-based
projects; and the maximum number of solvers a free-
entry fixed-price contest can accommodate, ni∗ and
nt∗ for ideation projects and trial-and-error projects,
respectively.6

The exposition of our results is much simpler with
a specific functional form for the effort function r�e�:7

r�e� = � ln e. Recall that for trial-and-error projects,
there exists by definition no improvement efforts, and
hence no deterministic improvements (r�e�= 0). How-
ever, for a trial-and-error project, given a solver’s
experimentation effort m, the expected performance

6 In a free-entry contest, the seeker does not impose any restrictions
on solvers’ entry to the contest. It is completely up to a solver’s
own choice whether to enter the contest or not. ne∗, ni∗, and nt∗

are the expected or maximum number of solvers that a free-entry
contest can accommodate for each type of project, such that every
participating solver can earn a nonnegative expected profit. It is
possible that ne∗, ni∗, and nt∗ are small due to factors such as high
fixed cost for solvers. It is also worth noting that a free-entry contest
is not necessarily cost-free to solvers. For example, solvers may
incur the fixed cost cf to enter a free-entry contest in our model.
7 Our key results are proven in the general case in the online
appendix.

of his best solution is � lnm (see the online appendix
for the detailed derivation), which is analogous to a
logarithmic return function r�m� = � lnm. Therefore,
for expertise-based projects and ideation projects, �
can be viewed as the return on effort coefficient, and
� can be viewed as the return on effort coefficient for
trial-and-error projects. For ideation projects, from the
solvers’ perspective, � also measures the stochastic
effect (variance) of the seeker’s evaluation.
Throughout the paper we use superscripts �e i t�

for the expertise-based project, the ideation project,
and the trial-and-error project, respectively.

Theorem 1B. In a fixed-price open innovation contest
with n solvers, the unique equilibrium is defined as follows:
(i) For expertise-based projects, only solvers with

endowed expertise that is higher than �f =
F −1��cf /A

e∗�1/�n−1�� will participate, where Ae∗ is the
optimal award. The improvement effort of a participating
solver with expertise � ∈  �f  
�! is

e∗���= Ae∗F ���n−1 − cf

c1
 (2)

and the expected number of participating solvers in a free-
entry fixed-price open innovation contest is

ne∗ = n�1− �cf /A
e∗�1/�n−1���

If cf = 0, the award is Ae∗ = � and the expected profit for
the seeker is

�e∗ = �
∫ 
�

�
�nF ���n−1f ���d�+ �1−��

∫ 
�

�
�f ���d�

+ �

(
ln

�

c1
− �n− 1���+ �1−��n�+n

n

)
� (3)

(ii) For ideation projects, the improvement effort of the
solver is

e∗ = �2�n− 1�
�c1n

2
 (4)

the award is Ai∗ = �, the expected profit for the seeker is

�i∗ = �+ �

(
ln

�2�n− 1�
�c1n

2
− 1

)
+�� lnn (5)

and the maximum number of participating solvers in a free-
entry fixed-price open innovation contest is

ni∗ ≈ ���− ��

�cf

�

(iii) For trial-and-error projects, the experimentation
effort of the solver is

m∗ = ��n− 1�
n2c2
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Figure 2 Equilibrium Probability of Winning for a Particular Solver, Effort �e∗ or m∗�, the Seeker’s Optimal Expected Profit as a Function of the Number
of Solvers n
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Notes. � has a zero mean Gumbel distribution with �= 2 for expertise-based projects, �= 1 for ideation and trial-and-error projects, �= 1, cf = 01, �= 2,
�= 1, c1 = 01, and c2 = 01. Figures illustrate only the curvatures, not the scales.

the award is At∗ =�, the expected profit for the seeker is

�t∗ = �+�

(
ln

��n− 1�
nc2

− 1
)
− �1−��� lnn (6)

and the maximum number of participating solvers in a free-
entry fixed-price open innovation contest is

nt∗ =
√

�

cf

�

For all types of projects, the equilibrium solver
effort is increasing in the award amount A and
decreasing in effort cost parameters c1 or c2. As effort
cost parameter c1 or c2 increases, the seeker’s expected
profit can decrease to zero. In this case, the prob-
lem solving for the project does not suit the con-
test model. Figure 2 illustrates how the equilibrium
probability of winning for one solver effort, and the
seeker’s expected profit change with respect to the
size of the solver population, n. An interesting obser-
vation is that from the equilibrium solver strategies
(Figures 2(d)–2(f)), we can see that there exists a neg-
ative externality among solvers in all three projects:
for a given award A, the more solvers participate in
the open innovation contest, the less effort each solver
exerts in equilibrium.
For an expertise-based project, the equilibrium

effort e∗ defined in (2) is decreasing in n because
F ���≤ 1. The negative externality effect in an ex-
pertise-based project is severe because the equilib-
rium effort e��A� is a decreasing power function of n

(see Figure 2(d)). For an ideation project, because the
return function r is concave and n2/�n− 1� is increas-
ing in n, the equilibrium effort e∗ defined in (4) is
also decreasing in n, but at a slower rate. For a trial-
and-error project, the equilibrium number of parallel
experiments m∗ conducted by each firm is decreasing
in n at an even slower rate.
The intuition behind this negative externality

reflecting an underinvestment in solver effort is that
the more solvers participate in the contest, the lower
the probability of winning for a particular solver
(see Figures 2(a)–2(c)). With lower winning probabil-
ities, the solvers’ expected profits decrease, leading
to weaker incentives for them to exert higher efforts.
This underinvestment in effort leads to an inefficiency
in an open innovation system.
A similar argument can be made for the equilib-

rium effort (4) for an ideation project with respect
to parameter �, which from the solvers’ perspective
measures the stochastic effect of the seeker’s taste.
The equilibrium effort (4) is decreasing in �: with
increasing variance, the effect of effort on the proba-
bility of winning is decreasing; the winner is chosen
by luck, not by his exerted effort e.
The negative externality among solvers also has an

interesting impact on the solver entry pattern. Con-
sistent with intuition, the number of participating
solvers is decreasing in the fixed cost cf irrespective
of project type. For a higher fixed cost cf , a solver
needs to earn a higher expected profit to break even.
Because the equilibrium expected profit a solver can
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earn is decreasing in the number of contestants, n,
higher fixed costs lead to fewer participating solvers.
For expertise-based projects, the fixed cost excludes
solvers with low endowed expertise from entering a
contest. The expected number of solvers participat-
ing (because solver expertise is a random variable)
ne∗ is decreasing in the fixed cost cf . For ideation
projects and trial-and-error projects, the number of
solvers participating in a free-entry fixed-price open
innovation is no more than a threshold ni∗ and nt∗,
respectively. Both thresholds are also decreasing in the
fixed cost cf .8

To mitigate underinvestment in effort caused by
the negative externality among solvers, existing litera-
ture on R&D tournaments (Taylor 1995, Fullerton and
McAfee 1999, Che and Gale 2003) suggests that a free-
entry R&D tournament is in general not optimal, and
it is necessary to restrict the size of an R&D tourna-
ment, potentially all the way down to two (Fullerton
and McAfee 1999, Che and Gale 2003). Theorem 1C
shows that this result cannot be straightforwardly
transferred to innovation contests as described in this
paper.

Theorem 1C. Consider a fixed-price open innovation
contest with n solvers. (i) If the seeker’s weight on the
performance of the best solution, �, is high enough, the
free-entry open innovation contest can be optimal for all
three types of projects. When the seeker’s objective is to
maximize the performance of the best solution ��= 1�, the
free-entry open innovation contest is always optimal for
ideation projects and trial-and-error projects. It is also opti-
mal for expertise-based projects with Gumbel-distributed
solver expertise with scale parameter � if �≥ �/2. (ii) If the
seeker’s weight on the performance of the best solution, �, is
sufficiently low, a free-entry open innovation contest may
not be optimal. When the seeker’s objective is to maximize
the average performance of all solutions ��= 0�, free-entry
open innovation contest is not optimal for any of the three
types of projects.

Theorem 1C indicates that whether free-entry open
innovation is optimal for the seeker critically hinges
on the seeker’s objective. If the seeker primarily cares
more about the performance of the best solution, free-
entry open innovation is optimal. In this case, the
seeker obtains a unique benefit of having more partici-
pants for ideation and expertise-based projects: higher

8 When cf = 0, we have ne∗ = n, which implies that for any given
number of solvers n, all solvers would participate in a fixed-
price open innovation contest for an expertise-based project. When
cf = 0, we have ni∗ = � and nt∗ = �, which also imply that for
an ideation project and a trial-and-error project, a fixed-price open
innovation contest can accommodate any given number of solvers.
Therefore, when we study the case where the number of solvers
is a decision variable for the seeker with cf = 0 in §7 (ne∗

S , ni∗
S , and

nt∗
S ), this decision will not be bounded above.

solver diversity. This is consistent with an empiri-
cal study on 166 scientific problems posted on Inno-
Centive’s website by Lakhani et al. (2007), who find
that problem-solving success is related to the ability
to attract specialized solvers with diverse scientific
interests. When free-entry open innovation is opti-
mal, Theorem 1B and Theorem 1C also imply that the
seeker might be better off by subsidizing part of the
fixed cost for solvers to encourage entry.
For expertise-based projects, the effect of higher

solver diversity is captured by the term
∫ 
�

�
�nF ���n−1 ·

f ���d� in the seeker’s expected profit (3). This expres-
sion can be thought of as the expected value of
the highest expertise among the n solvers. The more
solvers, the higher the best solver’s expertise is likely
to be. For a Gumbel-distributed noise variable with
mean �o and scale parameter �, the expected high-
est expertise among n solvers is �o + � lnn. Hence,
for an expertise-based project with logarithmic return
functions, � can be viewed as the coefficient of return
on having more solvers, whereas � is the coefficient
of return on higher effort. The condition � ≥ �/2 in
the Theorem 1C basically says that when the return
on diversity is strong enough relative to the return
on effort, the diversity benefit overcomes the undesir-
able effect of underinvestment in solver effort that is
associated with having a larger solver pool (see
Figure 2(g)).
For an ideation project, this benefit of higher solver

diversity is reflected by the term � lnn in the seeker’s
expected profit (5). Not knowing the seeker’s taste,
solvers build one single prototype. Having more par-
ticipants consequently increases the total amount of
experimentation, and as a result the best solution pro-
vides a better fit to the seeker’s taste. For ideation
projects, Theorem 1B indicates that the diversity ben-
efit of having more solvers outweighs the negative
externality effect of solvers’ underinvestment in effort
such that free-entry open innovation is optimal (see
Figure 2(h)).
Free-entry open innovation is always optimal for

trial-and-error projects. This is due to a unique feature
of the trial-and-error project: parallel experiments are
perfectly cumulative across solvers. From the seeker’s
point of view, solver A conducting 4 parallel experi-
ments and solver B conducting 6 parallel experiments
is equivalent to one solver conducting 10 parallel
experiments. This perfect cumulation of effort across
solvers is reflected by the term � lnnm∗ in the seeker’s
expected profit (6). Thus, although each solver’s equi-
librium number of experiments is decreasing in n, the
total number of experiments across all solvers, nm∗,
is actually increasing in n. As a result, the seeker’s
optimal expected profit increases as n becomes larger
(see Figure 2(i)).
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The next observation further illustrates the benefit
of a free-entry open innovation to the seeker. Nor-
mally, the sponsor of a contest could increase its
payoff by charging contestants a collectable entry
fee (e.g., Taylor 1995). In contrast, the next corollary
shows that in the innovation contest we study, and a
seeker who solely focuses on the performance of the
best solution, for ideation projects and trial-and-error
projects, it is in the seeker’s best interest to charge
zero entry fee.

Corollary. Consider the case that the seeker can
charge an entry fee from a participating solver. If the
seeker’s objective is to maximize the performance of the best
solution �� = 1�, for ideation projects and trial-and-error
projects, the optimal entry fee is zero.

From a solver’s perspective, the effect of an entry
fee is the same as the effect of fixed costs. How-
ever, from the seeker’s perspective, unlike the fixed
cost, the seeker collects entry fees paid by participat-
ing solvers. One might expect that the seeker could
do better by charging such an entry fee. The above
result indicates that for ideation projects and trial-
and-error projects with � = 1, the benefit of higher
diversity of a large solver pool is so strong that the
seeker should charge no entry fee, and thus promote
a maximum level of participation from the solvers.
For expertise-based projects, corresponding analytical
results cannot be obtained. However, straightforward
numerical examples demonstrate that the same con-
clusion holds.9

5. Enhancing the Efficiency of
Open Innovation

The results of §4 show that for innovation contests as
defined in this paper, contrary to the classic economics
result for contests, free entry (large n) can be optimal.
We now investigate the applicability of another stan-
dard result to our specific setting: the optimality of
fixed-price awards. Specifically, we study the impact
of choosing an alternative award mechanism, a
performance-contingent award, on the seeker’s prof-
its. One way to implement a performance-contingent
award is through a royalty contract. For example, the
office product retailer Staples has recently conducted
large-scale innovation contests and rewarded success-
ful solvers by allocating them a percentage of the
associated profits instead of granting them a fixed
reward (see Bulkeley 2006). For ease of exposition, we

9 However, it is worth noting that our results only establish the
optimality of free entry for fixed-price contests. There could exist
more complicated mechanisms (with or without entry fee) such as
the one we will discuss in the next section that can do better than
the free-entry open innovation contest with fixed-price award.

consider the case in which the seeker’s goal is to max-
imize the performance of the best solution (�= 1) and
the solver’s fixed cost of participation is zero (cf = 0).
In a contest with a performance-contingent award,

the winner is awarded a proportion %, of the per-
formance of his solution (where 0 < % < 1). After
observing the seeker’s proposed award share %, the
n solvers simultaneously choose the level of effort to
exert. Each participating solver will then submit his
solution.
Consider a solver i with endowed expertise �i.

Given the seeker’s award share % and his own exper-
tise �i, solver i needs to decide how much improve-
ment effort, ei, and experimentation effort mi to exert.
Suppose all other solvers exert efforts e and m. Then,
the general problem for solver i in a contest with a
performance-contingent award can be written as

max
ei≥0mi≥1

�i�eimi�

=%�max�vj��j em	j� ∀j��×Pr�vi��i eimi 	i�

>max�vj��j em	j� j �= i��− c1ei − c2mi�

Let e∗�%� and m∗�%� be the solver’s equilibrium strat-
egy for a given award share %.
Given the solvers’ equilibrium strategy, the seeker’s

problem is to choose the award share % to maximize
the expected payoff, which is just 1 − % percent of
the expected performance of the best solution gener-
ated from the open innovation contest. Therefore, the
seeker’s problem is

max
0<%<1

�p�Ap%�

= �1−%�max
{
vk��ke

∗�%�m∗�%�	k� k=12���n
}
�

The following theorem shows that with the loga-
rithmic return function r�e� = � ln e, a contest with a
performance-contingent award is more profitable to
the seeker than fixed-price awards.

Theorem 2. For ideation projects and trial-and-error
projects, the seeker makes a higher expected profit in an
open innovation contest with a performance-contingent
award than in an open innovation contest with a fixed-
price award. For expertise-based projects, the seeker may
or may not benefit from an open innovation contest with a
performance-contingent award.

For both ideation and trial-and-error projects, a con-
test with a performance-contingent award enhances
the efficiency of open innovation (Figure 3). In such
a contest, the amount of award a solver potentially
can win depends on the realized performance of
the solver’s solution, which is stochastically increas-
ing in his effort. From a solver’s point of view, a
performance-contingent award presents two incen-
tives to increase effort: Exerting higher effort not only
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Figure 3 The Seeker’s Expected Profits with Performance-Contingent
Award and Fixed-Price Award as Functions of the Number of
Solvers n for Ideation Projects and Trial-and-Error Projects
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Note. �= 2, �= 1, c1 = 01, c2 = 01, and �= 1.

increases the probability of winning, but also the
amount of award that is received in the case of win-
ning. The second incentive is missing in a fixed-price
contest. Thus, a performance-contingent award cre-
ates a stronger incentive compared to a fixed-price
award. Figure 3 also indicates that the benefits of a
performance-contingent award diminish as the num-
ber of solvers becomes larger. With a larger number
of solvers, both the negative externality effect and the
diversity benefit are so strong that all other factors
become negligible. This observation suggests that for
ideation projects and trial-and-error projects, using a
simple fixed-price award would not sacrifice much
profit for the seeker in large contests. However, for
small contests with a limited number of solvers, it
is advisable to use performance-contingent awards to
enhance the profitability of open innovation contests.
A performance-contingent award, however, may

not work for expertise-based projects. Recall that
unlike ideation projects and trial-and-error projects,
in an expertise-based project, solvers are differen-
tiated in endowed expertise, and the design pro-
cess is not influenced by random noise. A solver
with relatively low endowed expertise still has a
chance to win, but predicts that the award that he
potentially could win is limited because it is propor-
tional to his low endowed expertise plus his equi-
librium effort. As a result, solvers with relatively
low endowed expertise become more conservative
in exerting effort compared to a fixed-price con-
test. Of course, solvers with relatively high endowed
expertise become more aggressive compared to a
fixed-price contest. Therefore, the power of a con-
test with a performance-contingent award for an
expertise-based project depends on the distribution of
solvers’ endowed expertise F ���.

6. Internal R&D vs. Open
Innovation Systems

In this section, we contrast the profitability of internal
R&D with two different types of innovation contests.

One is an innovation contest that is administrated by
the seeker (as done by QVC or Staples), and another
one is an innovation contest that is administrated by
an independent intermediary (as done by InnoCen-
tive). To make the comparisons tractable, we consider
the case in which the seeker’s goal is to maximize
the performance of the best solution (� = 1), and the
solver’s fixed cost of participation is zero (cf = 0).
We first examine the seeker’s optimal internal R&D

strategy for each type of project. Let cs1 and cs2 be
the seeker’s costs-of-improvement effort and experi-
mentation effort, respectively. For an expertise-based
project, let �s be the seeker’s endowed expertise on
the project. If the seeker chooses to conduct the project
internally, her problem can be written as

max
e≥0m≥1

�I�em�= v��s em	�− cs1e− cs2m

where the performance function v��s em	� is
defined in (1).
When administrating an open innovation contest,

the seeker needs to develop a pool of participat-
ing solvers through advertising, invitations, and other
means. There is a cost associated with such solver pool
development activities. We assume that to develop a
solver network with n solvers, the seeker incurs a cost
of csn, which is linear in the size of the solver pool n.
The seeker’s problem for a self-administrated open
innovation system is

max
n≥2

�S�n�=�∗�n�− csn

where �∗�n� is the seeker’s optimal expected profit in
a fixed-price open innovation contest with n solvers,
which is defined in Theorem 1B. Solving the above
problem for a logarithmic return function r�e� =
� ln e and Gumbel-distributed solver expertise with
scale parameter � for expertise-based projects, the
optimal size of the solver pool the seeker would
develop for expertise-based, ideation, and trial-and-
error projects are

ne∗
S = �+√

�2 − 4cs�

2cs

 (7)

ni∗
S ≈ �− �

cs

 (8)

and
nt∗

S =
√

�

cs

 (9)

respectively. Note that the seeker’s marginal value of
obtaining an additional solution is decreasing in our
model. For the seeker, each solution he receives cor-
responds to a draw of some distribution. Because of
the properties of the extreme value distribution, the
extra gain from this draw decreases.
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Table 2 Conditions for Each Innovation Mechanism to Be Optimal for Each Project Type

Self-administrated Intermediary-administrated
Internal R&D open innovation open innovation

Expertise-based � < �eSO and c1 > fe��� or � ≥ �eSO and c1 > ge��� � < �eSO and c1 ≤ f e��� � ≥ �eSO and c1 ≤ ge���

Ideation � < �iSO and c1 > f i ��� or � ≥ �iSO and c1 > gi��� � < �iSO and c1 ≤ f i ��� � ≥ �iSO and c1 ≤ gi ���

Trial-and-error �< �t
SO and c2 > ct2 or �≥ �t

SO and c2 > gt��� �≥ �t
SO and c2 ≤ gt ��� � < �t

SO and c2 ≤ ct2

If the seeker decides to use an open innovation
contest with no solvers that is administrated by an
independent intermediary, the seeker needs to pay
a fixed fee, p, to use the intermediary’s service. For
example, InnoCentive charges a fixed fee to allow a
seeker to run a fixed number of contests on its web-
site. In this case, the seeker’s optimal expected profits
for the three types of projects are �∗

O = �∗�no� − p,
where �∗�no� is defined in Theorem 1B for each type
of project.
As discussed above, both innovation contest

approaches (self-administrated and intermediary
administered) suffer from a loss of efficiency caused
by the underinvestment in the solver effort. However,
relative to internal R&D, there exists a second form of
inefficiency, which is the classical “double marginal-
ization” effect in decentralized systems. With internal
R&D, the seeker’s investment in R&D costs directly
generates performance. In contrast, in an innovation
contest, the seeker and the solvers form a decentral-
ized system. The seeker’s investment in the award
size cannot directly generate performance. Instead, it
needs to induce the solvers to exert efforts that in
turn generate performance. Thus, the attractiveness
of open innovation relative to internal R&D depends
on whether or not it can offer sufficient benefits to
overcome the two efficiency losses. Theorem 3A char-
acterizes the seeker’s optimal R&D mechanism.

Theorem 3A. Let r�e� = � ln e be the solvers’ effort
function and consider Gumbel-distributed solver expertise
with scale parameter � for expertise-based projects. Given

Figure 4 The Seeker’s Optimal R&D Mechanism

Ideation project Trial-and-error projectExpertise-based project

So
lv

er
’s

 e
ff

or
t

co
st

c 1
or

c 2

c1 c1 c2

Intermediary
open better

Internal better

Self open
better Intermediary

open better

Intermediary
open better

Internal better
Internal better

Self open
better Self open

better

f e(θ)

ge(θ)
c2

h

Return on effort coefficient θ or µ

θe
SO θs

SO µh
SO

θ

f s(θ)

gs(θ)
gh(µ)

θ µ

Notes. � has a zero mean Gumbel distribution with � = 2 for expertise-based projects, � = 1 for ideation and trial-and-error projects, � = 2 for ideation
projects, c1s = 01, c2s = 01, cs = 005, �s = 1, and no = 5. � is the return on improvement effort coefficient for expertise-based projects and ideation projects.
� is the scale parameter for Gumbel distributions for all projects.

the seeker expertise, �s , the effort cost, cs1, the number
of solvers at the intermediary, no, and the price charged
by the intermediary, p, the conditions for each innovation
mechanism to be optimal for each project type are provided
in Table 2. The definitions for �e

SO , �i
SO , �t

SO , ct
2, f e���,

f i���, ge���, gi���, and gt��� are provided in the online
appendix.

The seeker’s optimal choices of R&D mechanism
for different project types are illustrated in Figure 4.
As indicated in Theorem 3A and shown in Figure 4,
if the external solver’s effort cost is lower than a cer-
tain level, either self-administrated or intermediary-
administrated open innovation is a better choice than
internal R&D. With low effort costs, external solvers
would exert higher effort in equilibrium, which will
create sufficient benefits to offset the inefficiency of
the open innovation system.
Theorem 3A and Figure 4 also reveal a counterinu-

itive difference between self-administrated open inno-
vation system and intermediary-administrated open
innovation system. For expertise-based projects and
ideation projects, self-administrated contests are pre-
ferred to intermediary-administrated contests when
the return on effort coefficient is small. In contrast,
for trial-and-error projects, self-administrated contests
are preferred to intermediary-administrated contests
when the return on effort coefficient is large. As we
discussed above, with a larger solver pool, each solver
exerts less effort in equilibrium due to the negative
externality among solvers. With a high return-on-
effort coefficient, this negative effect of lower effort
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is amplified for expertise-based projects and ideation
projects. Therefore, it is optimal for the seeker to
reduce the size of the self-administrated open inno-
vation system. This is reflected in the optimal sizes of
the solver pool for these two types of projects speci-
fied in Equations (7) and (8), which are both decreasing
in the return on effort coefficient �.
However, for trial-and-error projects, effort is per-

fectly cumulative across solvers. Although each solver
exerts less effort in a larger open innovation system,
the total amount of effort exerted by all solvers is
actually higher (see detailed discussion in §4). With a
high return-on-effort coefficient, there hence exists a
stronger incentive for the seeker to develop a larger
solver pool, which strengthens the attractiveness of a
self-administrated contest. This is reflected in the opti-
mal size of the solver pool specified in Equation (9),
which is increasing in the return-on-effort coefficient �.
In addition to providing access to a network of

solvers, an intermediary-administrated contest can
offer other benefits beyond what is captured in our
model. This includes the fact that the identity of
the seeker is kept private (in some cases, the seeker
prefers the outside world not to know that he is work-
ing on a particular problem), the benefits of estab-
lishing a trustworthy third party that can broker the
intellectual property rights between the seeker and
the solvers, and the development of the required tech-
nical and organizational infrastructure.

Theorem 3B. Consider a fixed-price intermediary-ad-
ministrated open innovation contest with no solvers and
a logarithmic return function r�e� = � ln e. (i) For
expertise-based projects, if the upper bound on the support
of F , 
�, is high enough, there exists a solver pool size, 
ne,
such that the seeker strictly prefers open innovation to
internal R&D when no ≥ 
ne. Otherwise, there exists a 
�s

such that the seeker strictly prefers internal R&D to open
innovation when the solver’s own expertise �s ≥ 
�s . (ii) For
ideation projects, there exists 
ni such that the seeker strictly
prefers open innovation to internal R&D when no ≥ 
ni.
(iii) For trial-and-error projects, if cs2 > c2, there exists a
solver pool size, 
nt , such that the seeker strictly prefers open

Figure 5 The Seeker’s Optimal Choice Between Internal R&D and Intermediary-Administrated Open Innovation System with no Solvers
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Note. � has a zero mean Gumbel distribution with �= 2 for expertise-based projects, �= 1 for ideation and trial-and-error projects, �= 2, � = 1, c1 = 01,
c2 = 01, and �s = 2.

innovation to internal R&D when no ≥ 
nt . Otherwise, the
seeker always prefers internal R&D to open innovation.

For an expertise-based project, the benefit of an
intermediary-administrated open innovation system
is that there potentially could be a “genius” in the
solver pool with a much higher endowed expertise
than the seeker’s own endowed expertise �s . For
ideation projects, solvers are differentiated as cap-
tured by the random noise variable 	 in the perfor-
mance function. An intermediary-administrated open
innovation benefits the seeker by providing a higher
diversity in solutions. For trial-and-error projects, an
intermediary-administrated open innovation offers no
additional benefits relative to internal R&D other
than potential cost savings. Hence, without a cost
advantage (i.e., cs2 ≤ c2), open innovation is never a
better choice for the seeker. This conclusion seems
surprising given that we have shown that free-entry
open innovation is always optimal for a trial-and-
error project due to its perfect effort cumulation.
However, just because of this perfect effort cumula-
tion, the seeker is able to completely replicate the ben-
efit of multiple experiments internally.
Figure 5 summarizes the insights of the above

discussions by illustrating how the seeker’s optimal
innovation process (internal versus open) changes
with respect to relevant parameters for each type
of project. Consistent with intuition, as the seeker’s
own costs of effort increase, the necessary number
of solvers (i.e., 
ne, 
ni, and 
nt) that leads the seeker
to choose an intermediary-administrated open inno-
vation over internal R&D decreases for all project
types. For both, expertise-based projects and ideation
projects, the seeker prefers open innovation to inter-
nal R&D even when there exists a cost advantage
over the external solvers (i.e., c1s < c1), whereas
this can never happen for trial-and-error projects
(when c2s ≤ c1). Thus, we conclude that expertise-
based projects and ideation projects are more suitable
for an an intermediary-administrated open innova-
tion model than are trial-and-error projects.
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Corollary. Consider a logarithmic return function
r�e� = � ln e. Using a fixed-price open innovation contest,
for expertise-based and trial-and-error projects, the seeker
benefits from solutions with better performances rather
than from lower costs. For ideation projects, the seeker ben-
efits from both better solutions and from lower costs.

For the logarithmic return function r�e� = � ln e,
the seeker’s total R&D costs are �, � + �, and � for
expertise-based, ideation, and trial-and-error projects,
respectively. The optimal awards the seeker offers
in fixed-price open innovation contests for expertise-
based, ideation, and trial-and-error projects are �, �,
and �, respectively. Regardless of whether R&D is car-
ried out internally or externally, the seeker spends the
same amount for expertise-based projects and trial-
and-error projects. For ideation projects, the seeker
spends less with open innovation compared to inter-
nal R&D. In an ideation project, because each solver
must submit one prototype, the seeker obtains no

prototypes for free in the open innovation contest,
whereas in internal R&D, the seeker incurs costs for
each prototype built. The corollary shows that open
innovation should not be viewed primarily as a mech-
anism to achieve cost savings. Instead, open innova-
tion leads to better performance. This point should
be kept in mind in the ongoing discussion about the
impact of open innovation on our economy. Even if
some R&D work is shifted to other regions because
of the locations of the solvers, the local economy
(and society) would still benefit from obtaining better
products (which might also translate into more non-
R&D jobs).

7. Discussion and Conclusion
The promise of open innovation is appealing: increase
your capacity to innovate by tapping into a network
of knowledge transcending organizational bound-
aries. However, as we have shown, not all innovation
problems are suited equally well to this type of pro-
cess. Unlike in the case of internal innovation, solvers
participating in open innovation contests have to fear
that their problem-solving effort might not be finan-
cially rewarded. This leads them to underinvest in
effort, and an inefficiency in the market. The seeker
(or, if applicable, the intermediate) organizing the
innovation contest needs to be conscious of this effect
and to design the reward system taking into account
the type of the innovation problem (see Theorem 1A).
In addition to choosing an appropriate reward, a key
question for the open innovation system relates to
the number of potential solvers. Although economists
have argued that contests should be limited to two
solvers to minimize the underinvestment effect while
still benefiting from competition, we show that for an

innovation contest the benefits of diversity can out-
weigh or at least mitigate the negative effect of under-
investment. This can make large, fully open contests
profit maximizing to the seeker (Theorem 1B).
To further increase the efficiency of innovation

contests, mechanisms beyond the performance-con-
tingent award can be conceived. For example, one
could design a multiround contest, in which the first
round is played with a large pool of contestants
who make relatively little investment. This will iden-
tify skillful (and/or lucky) solvers who then could
be allowed to play in a limited (“private”) second-
round contest. In this second round, the limited pool
of solvers will drastically increase the probability
of any participating solver winning the award and
hence overcome some of the underinvestment prob-
lem. Furthermore, it is interesting to extend our one-
dimensional innovation model into more complex
innovation models such as innovation with unfore-
seeable uncertainty, whose R&D processes are often
characterized as open ended search for the unknown
unknowns (e.g., Sommer and Loch 2004). For an
open ended search problem, open innovation con-
tests could enable the seeker not only to improve per-
formance along a known dimension, but also to see
if there exist solutions/ideas of which the seeker is
not even aware. Alternative contest mechanisms and
innovation models are thus fruitful areas of future
research.
Future empirical research could analyze how inno-

vation contests are operated in practice as well as
how (and if) they are replacing internal innovation
and development processes. Based on our findings,
we certainly expect a growing popularity of this form
of innovation, with applications going well beyond
the current focus on biology or chemistry. To take
an example “close to home,” consider the academic
research process that leads to publications in a jour-
nal such as Management Science, and imagine how an
author might benefit from relying on the help of an
experienced solver when searching for the proof of a
difficult theorem!

8. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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