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This paper explores the rationing of bed capacity in a cardiac intensive care unit (ICU). We find that the
length of stay for patients admitted to the ICU is influenced by the occupancy level of the ICU. In particular,

a patient is likely to be discharged early when the occupancy in the ICU is high. This in turn leads to an
increased likelihood of the patient having to be readmitted to the ICU at a later time. Such “bounce-backs” have
implications for the overall ICU effective capacity—an early discharge immediately frees up capacity, but at the
risk of a (potentially much higher) capacity requirement when the patient needs to be readmitted. We analyze
these capacity implications, shedding light on the question of whether an ICU should apply an aggressive
discharge strategy or if it should follow the old quality slogan and “do it right the first time.” By comparing
the total capacity usage for patients who were discharged early versus those who were not, we show that an
aggressive discharge policy applied to patients with lower clinical severity levels frees up capacity in the ICU.
However, we find that an increased number of readmissions of patients with high clinical severity levels occur
when the ICU is capacity constrained, thereby effectively reducing peak bed capacity.
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1. Introduction
Numerous studies (Hall 2006, Institute of Medicine
2007) have found that resource constraints often
plague patient flows in hospitals in general and car-
diac care in particular. A resource constraint at any
one stage in the care process can lead to delays, con-
gestion, and overall reduction in patient throughput
for the hospital. For example, in the cardiac care pro-
cess, the surgical intensive care unit (ICU) has often
been identified as the process bottleneck. The ICU is
an expensive resource with the cost of patient care
being multiple times higher than in a regular ward
(see, e.g., Henning et al. 1987). Consequently, many
ICU’s operate at high levels of occupancy, leading
to increased waiting times upstream of the ICU and
an overall reduction in patient throughput (see also
McConnell et al. 2005).

Given the scarce ICU capacity, hospitals are often
forced to ration the available ICU beds. This means
that when the ICU reaches its full occupancy, the
healthiest (in relative terms) patient gets discharged,
more or less independent of their absolute health
condition. Although such early discharges clearly
increase patient throughput in the short term, they
have the potential to lead to medical complications

and to increase the likelihood that a patient has to
revisit the ICU in the future. Readmission of patients
following reduced ICU length of stay (LOS) has been
a topic of interest in the health-care literature, par-
ticularly following the rise of managed care over the
last two decades. However, the subsequent impact of
same-stay readmissions on the operational and finan-
cial performance of hospitals has not been examined.

It is this interplay between the medical variables
(which determine the ICU length of stay of a patient)
and the operational variables such as ICU occupancy
and capacity rationing that is at the heart of this
paper. Based on medical records, billing records, and
detailed operational flow data of 1,365 cardiotho-
racic patients in a large U.S. teaching hospital, we
develop an econometric model of patient recovery,
discharge from the ICU, and potential readmission to
the ICU. This allows us to make the following three
contributions.

First, we estimate the impact of ICU occupancy on
the ICU length of stay of a patient. This allows us to
study the discharge pattern of the ICU. We show that
a patient who is discharged from a busy ICU has an
average length of stay that is 16% shorter compared
to a patient (with similar medical conditions) that is
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discharged at a lower level of occupancy. Thus, the
ICU rations its capacity when reaching full occupancy
by discharging some patients early.

Second, we show that this capacity rationing behav-
ior has serious medical implications. Specifically, we
show that a patient who is discharged early has an
increased likelihood of being readmitted to the ICU at
some later time (creating a so called “bounce-back”)
within the same hospital stay. Moreover, we find that
patients have a dramatically longer length of stay in
the ICU when they are admitted to the ICU for a
second stay.

Third, we analyze the capacity implications of
the hospital’s discharge pattern. An early discharge
immediately frees up ICU capacity, but at the risk
of a (much higher) capacity requirement upon read-
mission. By comparing the total capacity usage for
patients who were discharged early versus those who
were not, we show that an aggressive discharge pol-
icy frees up capacity in the ICU for lower-severity
patients. However, we find that an increased number
of readmissions of high-severity patients occur when
the ICU is capacity constrained, thereby effectively
reducing peak bed capacity.

The remainder of this paper is organized as fol-
lows. We first discuss the recovery process of cardiac
patients with a focus on the ICU followed by a review
of the relevant literature. We then develop our mod-
els and provide a description of our data collection.
In §6, we present our estimation strategy and econo-
metric specifications. Finally we present our results
and conclude with a discussion of the implications of
our findings.

2. Process Description
After a cardiac patient is admitted to the hospital, a
number of presurgery diagnostic tests are conducted,
and the patient is prepared for surgery (see Figure 1).
These activities are collectively referred to as the pre-
operative stage. Immediately following surgery, the
patient is taken to the ICU. At this point, the patient
is typically unconscious and is on breathing assis-
tance via a ventilator. In the immediate post-operative
stage, various medications are administered to sedate
and stabilize the patient. The patient is under con-
stant monitoring, often requiring a one-to-one patient-
to-nurse ratio during the first 12 hours following
surgery. A physician is also immediately available to
attend to any complications that may arise.

Following discharge from the ICU, the patient is
taken to a step-down unit, or “the floor.” The step-

Figure 1 Patient Flow Process
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down unit has reduced intensity of treatment and
monitoring. For example, the patient may no longer
be on heavy medication and is typically no longer on
ventilator support. Also, an attending physician may
not be available immediately day and night.

The ICU is an expensive resource (Hall 2006),
involving costly equipment and full-time dedicated
staff. On the other hand, the step-down unit does
not require as high a level of patient monitoring or
equipment that is as costly. From a resource utiliza-
tion point of view, it is thus less costly to have a
patient in the step-down unit than in the ICU. As in
many process flows, the most costly resource is usu-
ally the bottleneck. In this case, the ICU is capacity
constrained, whereas the less costly step-down unit
generally has excess capacity. Therefore, to increase
throughput from the system, the hospital needs to
free up bed capacity in the ICU. If serious complica-
tions requiring increased level of care and monitor-
ing arise while the patient is in the step-down unit,
the patient is readmitted to the ICU. For the major-
ity of patients, however, no significant complications
arise, and after a period of stay in the step-down unit,
the patient is discharged from the hospital. A small
minority of emergency patients may also be admitted
directly into the ICU from the operating room without
going through the preoperative care process. The rest
of the care process is similar to that for the elective
care patients.

When the ICU is full, the decision maker is con-
fronted with the dilemma of whether to discharge
an existing patient early or to cancel the surgery
for a scheduled patient (because this patient would
immediately require an ICU bed). Both options are
undesirable—discharging a patient early could lead to
a bounce-back, whereas disrupting the surgery sched-
ule is inconvenient and perhaps medically risky for
the scheduled patient. It is thus theoretically possible
to use procedure cancellations as a way to match sup-
ply with demand. However, from discussions with
doctors from our research site, we learned that cancel-
lations of surgical cases as a result of ICU occupancy
are rare. Consequently, the only process flow control
to deal with this variability in inflow and medically
required ICU length of stay is the discharge decision.

This process of cardiac surgery and recovery is
common across hospitals, including the hospital
underlying this research study. The hospital is ranked
as one of the top hospitals in cardiac surgery in the
United States and performs over 1,200 cardiothoracic
surgeries a year, including complex procedures such
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as heart transplants. Given this size, the hospital has
an ICU dedicated to cardiothoracic care. The ICU
has a total of 18 beds. Most cardiothoracic surgery
patients spend between one and five days in the first
visit to the ICU, and about 14% of the patients require
readmission to the ICU within the same hospital stay.

3. Literature Review
Capacity planning in health-care delivery has been an
active and fruitful area for research in management
science and operations research. Previous studies
have looked at strategic decisions such as the sizing
of capacity including beds, equipment, and number
of staff (e.g., Kwak and Lee 1997, Green and Meissner
2002, Huang 1995, Green et al. 2006) as well as tac-
tical decisions such as the scheduling of procedures
(see, e.g., Gerchak et al. 1996). This stream of research
is quite extensive, and we refer the readers to Smith-
Daniels et al. (1988) and Green (2004) for more com-
prehensive overviews. Queueing theory is one of the
most commonly used analytical methods to describe
care processes because of the stochastic nature of
demand and service in health care, as well as the abil-
ity to estimate performance measures such as waiting
time, queue length, or turn-away probability.

A common assumption in the previous body of
literature is that the service rate is drawn from a
probability distribution (usually exponential) that is
exogenous to and independent of the current state of
the system, including the number of people waiting
in line. However, there exist several papers, some ana-
lytical and some empirical, that challenge this inde-
pendence assumption and postulate that resources
should increase their service rate when the load
on the system is high. This literature of dynamic
queueing control started with a set of analytical
models, including work by Bertsekas (2000), George
and Harrison (2001), Stidham and Weber (1989), and
Crabill (1972), that derive the optimal service rate
that balances the costs of acceleration with the costs
of waiting times. Collectively, this body of literature
shows that it is optimal for resources to accelerate as
the length of the queue increases.

From an empirical perspective, using data from two
distinct health-care services, patient transport and car-
diothoracic surgery, Kc and Terwiesch (2009) validate
that workers adapt to increasing levels of load in the
system by increasing their service rate. The authors
also show that such temporary service rate increases
are not sustainable (i.e., workers become fatigued)
and can have potentially serious quality implications.
The results obtained by Kc and Terwiesch (2009) com-
plement a set of prior lab experiments conducted by
Schultz et al. (1998, 1999) that establish that work-
ers in an assembly line adjust their service rates in

response to the amount of work in process inven-
tory between the workers. Powell and Schultz (2004)
found that such worker-level state-dependent behav-
ior has implications for the entire process flow.

Just like the literature reviewed above, the theory
underlying our work also is in the tradition of opti-
mal queueing control, and we empirically investigate
the relationship between system load and service rate.
However, what sets the present paper apart from the
prior literature is its focus on rework. We consider
a service setting in which the server has the option
to “rush” customers currently in service. Although
such rushing immediately increases service capac-
ity, it comes at the risk that the customer has to be
reworked at a later point in time. This, potentially
much longer, rework has a negative impact on service
capacity, leaving the server with a decision of “ rush-
ing now and reworking later” or “doing it right the
first time.”

The quality management literature has taken a firm
point on this decision. Rework is seen as one of
the seven sources of waste initially observed by the
Japanese production movement (see, e.g., Ohno 1988).
For example, in their work benchmarking automotive
production plants across the world, Womack et al.
(1990) found that General Motors’ Framingham plant
spent over 40 hours on the average vehicle, includ-
ing the rework of 1.3 defects per vehicle, whereas
Toyota in its Takaoka plant only needed 18 hours,
largely reflecting substantially less time wasted on
rework. In his description of Toyota’s production
system, Liker (2004) emphasized the importance of
getting quality right immediately as opposed to rely-
ing on rework downstream in the assembly line. This
quality paradigm has also been analyzed in health-
care operations. Tucker (2004) found in her study of
nursing work that nurses waste a large part of their
time reworking what either they themselves or other
members of the care process got wrong earlier on.

Although our paper is written to contribute to the
literature in operations management, we also draw
on the medical literature to appropriately capture var-
ious patient-level severity factors and their impact
on clinical outcomes as well as ICU capacity con-
sumption. In particular, we apply a widely used risk
stratification method called EuroSCORE (Nashef et al.
2002, Kurki 2002, Toumpoulis et al. 2005, Horak et al.
2009) to asses the impact of an early discharge on the
likelihood of a bounce-back to the ICU. We also build
on previous work in the medical literature to develop
models of patient recovery (Peake et al. 2006).

The impact on quality of care following reduced
length of stay has a history in the health-care lit-
erature. For example, Strauss et al. (1986) find that
patients tend to be discharged earlier when the ICU
is more crowded. They find that the reduced length
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of stay due to bed availability has no effect on the
rate of readmission to the ICU. Our study differs from
Strauss et al. (1986) in several ways. First, our out-
come measure is in-hospital revisit rate from the ICU
to the step-down unit and back. This is a very specific
flow path, compared to Strauss et al. (1986), where
the patient is discharged from the hospital. This dis-
tinction is important because the patient who is dis-
charged from the hospital is generally in a more stable
condition. Secondly, our length of stay is the time in
the ICU. We are measuring the impact of the imme-
diate postsurgery recovery time. Third, our focus is
on the impact of occupancy-induced length of stay
reduction on revisit rates. Occupancy allows us to per-
form a pseudorandomization of patients to treatment
and control groups, and as a result, handle unob-
served heterogeneity.

Bohmer et al. (2002) also examined the long-term
effects of ICU discharge policies and found that a
decrease in ICU length of stay is not followed by
a decrease in the long-term quality of care, as mea-
sured by the postdischarge revisit rate to the hospi-
tal and the 30-day postdischarge mortality rate. Obel
et al. (2007) examined the weekend effect on the
quality of care for patients and found that patients
who are discharged close to a weekend had a greater
likelihood of mortality. Similarly, Baker et al. (2009)
found that patients discharged from the ICU on days
with high admissions volume are associated with an
increased risk of a future unplanned readmission.
Our study also differs from Baker et al. (2009) in
several ways. First, we consider the effect of total
occupancy, not just the admissions volume on the
discharge decision. Second, we employ a cardiac risk
stratification method, combined with a detailed set
of 19 clinical risk factors to generate more equi-
table risk adjusted outcomes for the uniform set of
cardiothoracic surgery patients. Third, we develop
an instrumental variables approach to account for
unobservables and to make stronger claims about
causality. Fourth, we employ a risk-scoring method
to evaluate the impact of early discharge policies on
capacity utilization and overall throughput. The avail-
ability of detailed clinical and operational data, in
conjunction with the risk-scoring method allows us
to evaluate the effects of early discharge on capacity
usage and overall throughput for various classes of
patients. In other words, we develop recommenda-
tions about the sets of patients that are more suitable
for early discharges.

Recently, the development of rapid response teams,
which specialize in transferring patients with compli-
cations back into the ICU, has been an area of inter-
est (e.g., see Chan et al. 2008, Sherner 2009, Reynolds
et al. 2009) for hospitals. Our findings on the reduc-
tion in available capacity because of revisits could

have implications for the implementation of rapid
response teams. Finally, a related stream of literature
examines the identification of low-severity patients
for early discharge from the ICU (see Martin et al.
2005, Swenson 1992). Our analysis shows that low-
severity patients differ from high-severity patients in
their implications for the likelihood of a bounce-back
and usage of capacity. These findings suggest the
merit of further research into identifying patients for
early discharge.

The prior literature, however, has not examined
the subsequent impact of same-stay readmissions on
the operational performance of hospitals. What dis-
tinguishes our study from this previous work is
the availability of microlevel operational data, which
allows us to link clinical decisions more closely with
the immediate outcomes. This allows us to focus on
examining the effect of census-based occupancy mea-
sures on the risk-adjusted early discharges from the
ICU and subsequent revisits to the ICU from the step-
down unit during the same hospital stay. These same-
stay revisits to the hospital are important because they
have the potential to impact overall capacity utiliza-
tion and throughput.

4. Hypothesis Development
The time in the ICU following surgery is primarily
one of stabilization and recovery; this recovery pro-
cess involves major milestones such as the removal of
ventilator assistance and the weaning off from heavy
medication. Patients admitted to the ICU are hetero-
geneous in their medical conditions. In other words,
the risk of complications and the case severity vary
from patient to patient. A single bypass procedure
performed on a 50-year-old simply has a lower level
of risk than a triple bypass surgery on an 80-year-
old. A higher case severity typically requires a longer
time for recovery, i.e., a longer stay in the ICU. Thus,
any analysis of patient length of stay requires us to
account for the key indicators of severity, such as age
and other patient risk factors.

However, we argue that medical factors alone are
not the only determinants of patient length of stay.
As the occupancy level in the ICU increases, fewer
beds are available to accommodate the inflow of new
patients from the operating room. If the ICU is full
(i.e., all ICU beds are occupied), the hospital has to
ration the ICU capacity. A patient admitted out of
the operating room typically needs a bed immedi-
ately. Thus, a shortage of ICU beds leads to an exist-
ing patient having to be discharged from the ICU
to accommodate the “fresh” new patient. The dis-
charged patient is the healthiest from among the cur-
rent ICU population. Note, though, that in absence
of the high ICU occupancy, this same patient would
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have spent a longer time in the ICU, making the dis-
charge a result of operational variables as opposed to
medical variables alone.

To formalize this logic, we hypothesize that a
patient discharged from a busy ICU will have a
shorter ICU length of stay (LOSi) than a patient dis-
charged from a less busy ICU; that is,

¡ LOSi

¡OCCUPANCYi

< 01 (Hypothesis 1)

where OCCUPANCYi is the occupancy level at the
time of discharge of patient i.

From a medical perspective, a longer length of stay
increases the likelihood of a more complete patient
recovery in the ICU. A patient who is discharged
early for operational reasons related to ICU occu-
pancy, i.e., who would have spent a longer time in
the ICU if it were for medical considerations alone,
is at an increased risk of experiencing complications
outside of the ICU. Holding medical risk factors con-
stant, we therefore postulate that a patient who is
discharged early has a higher likelihood of a revisit
to the ICU. In other words, the greater the length of
stay, the lower the likelihood of a patient bouncing
back to the ICU:

¡Pri
¡ LOSi

< 01 (Hypothesis 2)

where Pri is the probability that patient i bounces
back. The alternative hypothesis is that the early
discharges have no effect on the likelihood of a
bounce-back. In the medical literature, we find
that the bounce-back rate is often taken to be a mea-
sure of the quality of care. If one takes this perspective
on the quality of care, Hypothesis 2 suggests that an
early discharge has a negative impact on the quality
of care.

Finally, consider the overall capacity implications
of an early discharge. If a patient is more likely to
bounce back to the ICU when discharged early, the
discharge decision has implications for the total ICU
capacity consumption of that patient. We define the
total ICU length of stay (TOTAL_LOSi) for patient i,
including the initial length of stay as well as the future
length of stay associated with a potential readmis-
sion, as

TOTAL_LOSi = LOSi +REVISITi1

where REVISITi is the revisit length of stay. REVISITi

takes a value of zero if a patient does not revisit.
Earlier, we postulated that a shorter initial length

of stay (LOSi) increases the likelihood of a bounce-
back. If this is true, there exists an optimal LOSi that
minimizes expected TOTAL_LOSi. In other words, the
ICU faces a trade-off between discharging a patient

early (“rushing a patient”), in which case the initial
length of stay is short but the bounce-back probability
is high, and following a more conservative discharge
policy (“doing it right the first time”), in which case
the initial length of stay is long but the bounce-back
probability is low. However, while operating under a
capacity constraint, the ICU has to discharge patients
early and is not able to achieve the optimal LOS for
each patient that it admits. Thus we hypothesize that
an early discharge from the ICU leads to an increase
in TOTAL_LOS:

¡TOTAL_LOSi

¡ LOSi

< 00 (Hypothesis 3)

The total length of stay in the ICU, however, is not the
only performance measure the hospital cares about.
Under the diagnosis-related group payment system,
a hospital is reimbursed a fixed payment amount
depending on the diagnosis for the patient, irrespec-
tive of the actual cost incurred by the hospital. A
hospital thus has little financial incentive to keep
a patient longer in the ICU than medically neces-
sary. The operational performance measure that max-
imizes hospital revenues is thus the overall patient
throughput.

By definition, the early discharge of a patient as a
result of capacity rationing happens at a time when
the ICU is capacity constrained. Freeing up a bed in
the ICU at that time and having the patient come back
at some point in the future may or may not increase
the patient throughput in the ICU. In particular, for a
patient who is discharged early, if a future readmis-
sion occurs at a time when there exists excess ICU
capacity, the early discharge helps increase the overall
patient throughput. On the other hand, if the read-
mission occurs when the ICU is capacity constrained,
the overall patient throughput could decrease.

We assess the throughput implications of the early
discharge decision (long initial length of stay versus
short initial length of stay) by estimating its impact on
the peak ICU capacity. Unlike our previous analysis
of patient length of stay, this peak capacity calcula-
tion explicitly considers whether the ICU is capacity
constrained at the time of the bounce-back or not. Let
BUSY4t5 be an indicator function indicating whether
the ICU is busy (and thus operating at peak capac-
ity) at time t, and let ti1 initial and ti1 revisit be the starting
times of initial visit and readmission of patient i to
the ICU, respectively. The peak capacity usage for a
patient is thus given by

TOTAL_PEAK_LOSi =

∫ ti1 initial+LOSi

ti1 initial

BUSY4t5 dt

+

∫ ti1 revisit+REVISITi

ti1 revisit

BUSY4t5 dt0
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Table 1 Operational Performance Variables Measure

Measure Description and coding

i Indicator variable for a patient
LOS Length of stay of initial visit of patient
REVISIT Revisit length of stay of patient
BB Binary variable denoting the incidence of a revisit or a

bounce-back of patient
OCCUPANCY Occupancy in the ICU at the time of admission of

patient
BUSY Binary variable denoting whether occupancy will

exceed the threshold during time of discharge
TOTAL_LOS Sum of initial and revisit lengths of stay
TOTAL_PEAK_LOS Sum of peak capacity usage during initial and

revisit stays

If an aggressive discharge decision decreases the
total peak bed capacity consumption, it helps to
increase the overall patient throughput in the ICU.
In other words, if the ICU could improve its effec-
tive capacity, the hospital would be able to schedule
more OR procedures. Put to the extreme, a patient
staying in a half empty ICU for one week has a lower
peak bed capacity consumption than a patient who
just spends one day in an ICU that is full. The total
peak capacity consumption thus depends on the inci-
dence of a revisit, occupancy during the revisit, and
the peak capacity saved from discharging the patient
early. In practice, even though a patient bounces back,
the revisit may occur when the ICU is not busy. Thus,
total peak capacity usage may decrease because the
peak capacity saved from an early discharge more
than compensate for future peak capacity usage. In
other words “rushing and revisiting” can be used to
smooth demand for peak bed capacity, under which
lower-priority demand is satisfied later. Thus, we
hypothesize that such early discharges of patients
from the ICU reduce peak capacity consumption:

¡TOTAL_PEAK_LOSi

¡ LOSi

> 00 (Hypothesis 4)

Table 1 provides a brief description of the key vari-
ables that we analyze.

5. Data Collection
Our data were collected from the cardiothoracic inten-
sive care unit at our research site. For each of the
patients in our sample, we compiled data from three
different sources—a medical database, a patient track-
ing system, and the patient billing records.

Our first source of data is the hospital’s patient
tracking system. This information system, NaviCare,
tracks patients and resources such as hospital beds
and patient transporters in real time and supports
the hospital in its patient flow management. Our

research site was one of the first implementation
sites of NaviCare in the country, providing us with
access to patient flow data beyond what had previ-
ously been feasible. NaviCare generates time stamps
for a set of events associated with the patient mov-
ing through the hospital, including the exact time
the patient entered in and departed from the ICU.
This information allows us to impute the length of
stay for each individual patient. More importantly,
because NaviCare allows us to track each individ-
ual patient’s location at any given time in the hospi-
tal, we use this information to estimate an accurate,
time-varying level of occupancy in the ICU. Prior to
NaviCare, such microlevel data had not been avail-
able, and researchers typically had to rely on less
accurate census data to estimate occupancy levels. In
addition, the time stamp information allows us to test
for potential seasonality associated with the time of
admission.

The medical data were obtained from the cardiac
surgery clinical database from the Society for Tho-
racic Surgeons. This clinical database provides a com-
prehensive set of medical variables that enables us
to capture the medical heterogeneity across patients.
For example, the type of procedure, preexisting con-
ditions, age, gender, and risk factors affect both the
recovery time (and hence length of stay in the ICU)
as well as the likelihood of developing complica-
tions that could lead to bounce-backs. These vari-
ables are used to adjust for patient severity using a
widely used model called EuroSCORE (2007), which
includes a set of indicators for potential sources of
complications such as previous cardiac surgery, an
unstable angina, or a neurological dysfunction. We
augment the EuroSCORE model to also include the
New York Heart Association (NYHA) classification,
which is a discrete measure of classifying the extent of
heart failure. Finally, we used patient billing records
to determine the payer type and insurance status
of the patient. In addition to medical variables, one
might argue that hospitals discriminate the level of
service they offer depending on the insurance status
of the patient. Table 2 provides a comprehensive list-
ing of the patient-level clinical risk factors and non-
clinical controls such as day of week and the type of
payer (e.g., medicare, medicaid, private insurance, or
self-pay).

We merge these three data sets based on a unique
patient identifier to create a comprehensive and con-
solidated data set consisting of both medical and
operational variables. A total of 1,365 patient admis-
sions occurred from June 2006 to June 2007. This
initial set of patients includes acutely severe (e.g.,
heart transplant) patients as well as patients who
were admitted with primarily pulmonary conditions.
In addition, some medical indicators were missing
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Table 2 Control Variables

Measure Description and coding

Age (AGE ) Patient ages less than 60 were coded 1, patients between 60 and 70 were coded 2, patients between
70 and 80 were coded 3, patients between 80 and 90 were coded 4, and patients above 90 were
coded 5

Gender (GENDER ) Females are coded 1, and males 0

Chronic pulmonary disease (CH_PULM_DIS ) Indicates whether the patient is on medication for lung conditions or if the chronic lunge disease
condition is moderate or severe

Extracardiac arteriopathy (EXT_ART ) Indicates the presence of vascular disease

Neurological dysfunction (NEUR_DYSF ) If a cerebrovascular disease exits, this explanatory variable is coded 1; the time of occurrence of the
dysfunction and the type of the cerebrovascular disease are ignored

Previous cardiac surgery (PREV_CARD_SURG) Indicator to denote if patient has had prior cardiac surgery; the type of cardiac surgery is not
considered

Serum creatinine (SERUM_CREAT ) If the level is higher than 200 mmol/L, this risk factor is coded 1

Active endocarditis (ACT_ENDCRDT ) Indicator to denote that endocarditis is active

Critical preoperative state (CRIT_PRE_STATE ) This indicator variable denotes the preoperative state of the patient (critical state or not); the factors
that determine whether the patient is in critical state or not are the presence of arrhythmia (irregular
heartbeats), cardiogenic shock, need for resuscitation, the need for an intra-aortic balloon pump, or
the use of nitrates administered intravenously

Unstable angina (UNST_ANG) Indicates syndrome that is intermediate between stable angina and a myocardial infarction

Left ventricular dysfunction (LV_DYS ) Indicates whether ejection fraction is less than 30%

Recent myocardial infarction
(RECENT_MYCR_INF )

Indicates whether myocardial infarction (heart attack) occurred in the last 90 days

Pulmonary hypertension (PULM_HYPER ) Indicates that the systolic pulmonary pressure exceed 60 mmHg

Emergency (EMER ) Indicates status of patient at admission; emergency is coded 1

Other than isolated CABG (OTHER_CAB) Indicates whether in addition to a coronary artery bypass grafting, another type of heart procedure
was performed

Surgery on thoracic aorta (SURG_THOR ) Indicator for the presence of aortic aneurysm

Postinfarction septal rupture (POSTINF_RUPT ) Indicates whether ventricular septum ruptured following a heart attack

Day of week (DAY ) Day of week of procedure.

NYHA classification (NYHA) New York Heart Association risk classification (ranging from 1 to 4)

Payer type (PAYER ) Categorical variable to denote Medicare, Medicaid, insurance, self-pay, or none

for several patients, rendering risk adjustment and
the use of the EuroSCORE risk model inapplicable.
Because the lengths of stay and likelihood of bounce-
back for the acute case patients and those with miss-
ing observations could not be risk adjusted, we do
not include them in our statistical analysis. How-
ever, we do use these patients in estimating the ICU
occupancy.

We observed that a few (n = 42) patients bounced
back more than once. For these patients, we simply
analyzed the effect of occupancy on the LOS of the
patient during the first visit. Future visits obviously
affect the future occupancy in the ICU, and so we
used these revisits to estimate future occupancy. How-
ever, we did not examine the effect of future occu-
pancy on the LOS reduction in future ICU visits. We
did this for three reasons. First there is no clear theo-
retical or medical basis that we could draw on for the
effect of the first bounce-back on the second. Second,
and perhaps more importantly, the limited number
of observations do not allow us to test any hypothe-
ses that we may develop to examine the effect of the

first bounce-back on the second. Finally, the nature
of patient revisit is fundamentally different from the
initial stay. The initial visit is characterized primar-
ily by recovery from the “shock” of the surgery. The
recovery is more likely characterized by further com-
plications (e.g., infections). For these reasons we did
not pool these stays in a single regression analysis.
A total of 1,036 patients had the complete set of clin-
ical and operational (LOS, occupancy, bounce-back)
data. Tables 3 and 4 provide summary statistics for
these measures.

Table 3 Operational Variables Summary Statistics

Standard
Variable Mean deviation Median

LOS (days) 202 301 102
REVISIT on bounce-back (days) 402 406 208
OCCUPANCY (beds) 1504 206 16
BUSY 0040 0049 000
BB 0014 — —

Notes. Summary statistics include pulmonary patients. N = 11365.
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Table 4 Controls Summary Statistics

Variable Mean

NYHA 202
AGE 6203
GENDER 0034
CH_PULM_DIS 0014
ACT_ENDCRDT 0015
NEUR_DYSF 0017
RECENT_MYCR_INF 0029
SERUM_CREAT 0011
ACT_ENDCRDT 0006
CRIT_PRE_STATE 0033
UNST_ANG 0017
LV_DYS 0022
RECENT_MYCR_INF 001
PULM_HYPER 000037
EMER 003
OTHER_CAB 0017
SURG_THOR 0016
POSTINF_RUPT 00005
DAY (Sun., Mon., Tue., Wed., Thur., Fri., Sat.) (0.02, 0.19, 0.19, 0.18,

0.17, 0.2, 0.03)

Notes. Data for pulmonary patients do not appear in Table 4. N = 11036.

For our research design involving matching estima-
tors, we employ a binary measure of BUSY. The ICU
has a total of 18 beds. On any given shift, if the num-
ber of scheduled arrivals and the number of existing
ICU patients exceed the total available bed capacity,
patients have to be discharged early to accommodate
the new arrivals. For each patient i in our sample,
BUSYi is estimated at the time of discharge from the
ICU; BUSY has a value of 1 if the sum of the number
of new patients planned for arrival during the shift
and the number of patients currently in the ICU at
the time that patient i is discharged exceeds the total
available capacity. Therefore, from an operational per-
spective, a cutoff value of BUSY at 18 is an appropri-
ate proxy for high occupancy.

6. Econometric Specifications
First and foremost, healing and recovery in the ICU
require time. Consequently, everything else being
equal, the longer a patient has spent in the ICU, the
more likely she is to be ready for discharge. In other
words, the hazard (hi4t5) of patient i being discharged
at any given time t increases with the time spent in
the ICU. This assertion is in line with an extensive
body of research in biostatistics, modeling the effect
of time on patient recovery. Our interest is in exam-
ining the patient i’s initial length of stay in the ICU
(LOSi5 as a function of various medical and opera-
tional factors. We model the length of stay (LOS) of
the patient in the ICU using the Weibull distribution,
as the Weibull is commonly used in the biostatistics
literature to model durations for patient recovery.

Assuming that the LOS has a Weibull distribution,
we obtain the following econometric specification:

log4LOSi5= XiÂ+��i1 (1)

where the variables in Xi capture the various patient-
level and system-level factors that affect the patient’s
length of stay. For example, patient-level variables are
age or procedure type, whereas system-level variables
are the ICU occupancy, month of the year, or day
of the week. The coefficient Â provides an estimate
for the effect of these covariates on the LOS, Xi also
includes the dummy intercept term, � is the scale
parameter for the Weibull distribution, and �i denotes
the error term.

6.1. Effect of Occupancy on Initial Length of Stay
In specification (1) above, the length of stay in the
ICU in the absence of capacity constraints can be
explained by the parameters in Xi. To assess the effect
of ICU occupancy on the length of stay, we append
the binary variable BUSYi in the following expanded
specification. We redefine BUSYi = 1 to indicate that
the ICU is at high occupancy at the time of discharge
of patient i; 0 indicates otherwise:

log4LOSi5= �BUSYi + XiÂ+��i0 (2)

The coefficient � provides us the estimate of the effect
of high occupancy on the length of stay of the patient
and tests (Hypothesis 1).

6.2. Effect of Early Discharge on Bounce-Back
To investigate whether an early discharge has an
effect on the likelihood of a bounce-back, we start
with the following model:

Y ∗

i = XiÏ
∗
+�∗LOSi +ui1 (3)

BBi = 16Y ∗

i > 071 (4)

where Y ∗
i is the unobserved state of health of patient i

after being discharged from the ICU with length of
stay LOSi. Physicians may evaluate the patient’s state
of health using various metrics for overall physi-
ological function, response to medication, cognitive
ability, etc. The vector Xi includes patient-level fac-
tors (such as age, gender, various measures of phys-
iological functioning, emergency status, as well as
day of admission) that have been identified in the
medical literature to affect the rate of recovery and
the likelihood of patient morbidity, including revis-
its (see Table 2), and ui captures unobserved patient
heterogeneity. Although the actual state of health is
a latent variable, we do observe the incidence of a
bounce-back, captured by the binary variable BBi.
This model is thus estimated with the following pro-
bit specification:

Pri =ê4�LOSi + XiÏBB51 (5)
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where Pri denotes the probability that patient i has to
revisit the ICU, and ê is the cdf of the standard nor-
mal distribution; ÏBB provides estimates for the var-
ious risk factors on the likelihood of a bounce-back.
The above model is an extension of the EuroSCORE
model, which we augment to include LOSi, which
is our key variable of interest. If a faster discharge
(shorter length of stay) leads to an increased likeli-
hood of a revisit, we expect � to be negative. This
would provide support for Hypothesis 2.

However, the presence of endogenous variables on
the right-hand side of Equation (3) could bias our esti-
mate of �. Unobserved patient-level risk factors, for
example, would tend to increase LOSi and also simul-
taneously increase the likelihood of an adverse out-
come requiring a revisit. Such unobserved variables
would have the effect of attenuating our estimate of
�. In other words, � is an underestimate of the effect
of a faster discharge on the likelihood of a bounce-
back. An appropriate instrumental variable strategy
can be used to circumvent such endogeneity concerns
and to generate a consistent estimate of �. We include
the following specification to describe our instrumen-
tal variables (IV) estimation strategy:

LOSi = XiÏLOS +�BUSYi + vi1 (6)

where ÏLOS captures the effect of the patient-level
controls on the length of stay, and vi accounts for
unobserved heterogeneity that impact patient length
of stay. Because a busy ICU could lead to a shorter
length of stay (LOSi), while arguably having no
impact on the unobserved factors underlying patient
severity, occupancy in the ICU (BUSYi) is a potential
candidate as an instrumental variable for the effect
of length of stay on the likelihood of a bounce-back.
In other words, BUSYi provides exogenous variation
in the length of stay that is unrelated to the patient’s
underlying conditions, and thus allows us to generate
a consistent estimate for �.

The instrumental variable BUSYi is appropriate if
(i) it is correlated with the length of stay and (ii) it
satisfies the exclusion restriction, i.e., it is indepen-
dent of unobserved factors underlying the severity of
the patient. We test for the first necessary condition
for BUSYi to be an appropriate instrumental variable
by establishing that the length of stay is correlated
with the occupancy (to be discussed in the results
section). To validate the second assumption of inde-
pendence between case severity and occupancy, we
computed the correlation between the level of preop-
erative severity, as measured by the New York Heart
Association Severity Index and the occupancy in the
ICU. The resulting correlation coefficient is not statis-
tically different from zero (p = 0032), suggesting that
the underlying patient severity is uncorrelated with

the occupancy in the ICU. Moreover, we found in
our discussion with the doctors working in cardiac
care that the state of the ICU was not considered
when scheduling new surgeries in preoperative plan-
ning. This is because surgeries are scheduled days
and weeks in advance. At that time, predicting future
ICU occupancy is simply not feasible. Note that emer-
gency admissions, which account for a third of all
admissions, are by definition always random. Hence
the severity of these patients is independent of occu-
pancy in the ICU. In addition, we performed robust-
ness checks to verify the lack of correlation between
the arrival volume of patients and the occupancy in
the ICU. Given this independence between case sever-
ity and occupancy, the discharge of patients from
either a busy or a nonbusy ICU is effectively a natu-
ral experiment. This observation allows us to gener-
ate an unbiased estimate �IV of the effect of length of
stay on the likelihood of a bounce-back. We estimate
�IV using the method outlined by Woolridge (2002,
pp. 472–477). In particular, BUSYi will be used as an
instrument for endogenous regressor LOSi in (5), and
�IV will be estimated by instrumental variable probit
maximum likelihood.

6.3. Capacity Implications of Discharge Decisions
Recall from our earlier discussion that an early dis-
charge of a patient as a result of capacity rationing
in a busy ICU has two effects. First, the early
discharge reduces the initial length of stay of the
patient. Second, it could increase the probability that
the patient bounces back, thereby consuming ICU
capacity at a later point. As a result of these two
effects, the total capacity consumption (TOTAL_LOSi)
might increase or decrease with an early discharge.
Moreover, in addition to the total capacity consump-
tion of a patient, the hospital is especially con-
cerned about the total peak capacity consumption of
a patient and how this changes with an early dis-
charge (TOTAL_PEAK_LOSi). In the extreme case, if
all bounce-backs occurred at times when the ICU is
not busy, we could entirely ignore the extra days the
patients spend in the ICU when they bounce back.

To study the capacity implications of an early dis-
charge, we divide up the patient population into two
groups, the group of patients discharged from a busy
ICU, IBUSY, and the group of patients discharged from
a nonbusy ICU, INONBUSY where (IBUSY ∩ INONBUSY = �).
As we argued above, the discharge of a patient from
either a busy or a nonbusy ICU is effectively a natural
experiment and the severity of a patient is indepen-
dent of the occupancy of the ICU.

For each patient, we define LOS_MEDi as the length
of stay that the patient would have experienced if
there were no capacity constraints in the ICU, i.e.,
this is the length of stay determined based purely on
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the medical risk factors of patient i. For the patients
that were discharged from a nonbusy ICU, this med-
ically required length of stay corresponds to the actu-
ally realized length of stay (LOS_MEDi = LOSi ∀ i ∈

INONBUSY). In contrast, for the patients that were dis-
charged from a busy ICU, the medically required
length of stay is not realized (and hence cannot be
observed).

To estimate the medically required length of stay
for patients discharged from a busy ICU, we match
each patient in IBUSY with one or several patients in
INONBUSY that have similar medical conditions. This is
achieved by first computing the EuroSCORE model
risk score, p4Xi5, based on the set of medical vari-
ables, Xi, discussed previously and then creating a
set of matching patients, Ii, for each patient i ∈ IBUSY
such that p4Xi5≈ p4Xj5 with j ∈ Ii. The detailed process
of matching follows the method of matching estima-
tors (see, e.g., Rosenbaum and Rubin 1983, Heckman
et al. 1998) and is described in the online supple-
ment. The online supplement also describes the con-
ditions necessary for p4Xi5 to be a valid risk score.
Once we have identified a set of matching patients, Ii,
for a given patient i, we can estimate the medically
required length of stay, LOS_MEDi, as

LOS_MEDi =
1
nIi

∑

j∈Ii

LOSj1

where nIi
is the number of patients in Ii.

Based on the difference in the length of stay LOSi

and the estimated medically required length of stay,
LOS_MEDi, we can quantify the immediate capacity
benefit from discharging patient i early from a busy
ICU as

ãLOSi = LOSi −LOS_MEDi1

where i ∈ IBUSY. A negative value of ãLOSi implies
that bed capacity was freed up by discharging the
patient early.

An early discharge from a busy ICU does not only
shorten the initial length of stay, but also increases
the likelihood of a future bounce-back. We next exam-
ine the additional capacity consumption of such revis-
its to the ICU. Let REVISIT_MEDi be the additional
time that a patient i spends in the ICU for a potential
revisit (bounce-back). For each patient i discharged
from a busy ICU (i ∈ IBUSY), the expected revisit length
of stay for a patient discharged from a nonbusy ICU
(and hence had experienced the medically required
length of stay instead of being discharged early) can
be computed by looking at patients Ii with similar
medical conditions (p4Xi5 ≈ p4Xj5 ∀ j ∈ Ii) that were
discharged from a non busy ICU:

REVISIT_MEDi =
1
nIi

∑

j∈Ii

REVISITj 0

We expect the patients that were discharged early
from a busy ICU (i ∈ IBUSY) to have a larger ICU capac-
ity consumption because of revisits. We can quantify
this capacity loss caused by an increased amount of
ICU capacity spent on revisits as

ãREVISITi =REVISITi −REVISIT_MEDi0

The impact of early discharges on the total ICU capac-
ity consumption of patient i (TOTAL_LOSi) is the
net effect of the immediate capacity gains obtained
from early discharges (ãLOSi) and the capacity
losses resulting from more and/or longer revisits
(ãREVISITi):

ãTOTAL_LOSi =ãLOSi +ãREVISITi0

We can also estimate the peak capacity consump-
tion (TOTAL_PEAK_LOSi) for each patient i by con-
sidering whether the patient was discharged from a
busy ICU and whether the patient was readmitted to
a busy ICU. Recall that BUSYi is equal to 1 if the
patient was discharged from a busy ICU and 0 other-
wise. Similarly, we set the value of the binary variable
REVISIT_BUSYi to 1 if the ICU was busy at the time
of readmission of patient i and 0 otherwise. Then, we
can compute the impact of early discharges on the
peak capacity consumption of patient i as

ãTOTAL_PEAK_LOSi

=ãLOSi ×BUSYi +ãREVISITi ×REVISIT_BUSYi0

Both ãTOTAL_LOSi and ãTOTAL_PEAK_LOSi are
the result of occupancy-induced changes in the dis-
charge decision. Because the values of ãLOSi and
ãREVISITi are significantly smaller than the initial
stays and revisits, it is reasonable to assume that
the occupancy is not likely to change drastically
over the significantly smaller values of ãLOSi and
ãREVISITi. Therefore, BUSYi and REVISIT_BUSYi

provide good approximations for the occupancy dur-
ing the incremental lengths of stay (ãLOSi and
ãREVISITi). Finally, we estimate the average capac-
ity effect among patients who are similar in medical
conditions. We do this by first dividing up the patient
population discharged from a busy ICU into equally
sized groups (G) based on their risk scores. We then
construct equally weighted averages of ãTOTAL_LOS
and ãTOTAL_PEAK_LOS within each group. Our
estimator ãTOTAL_LOSG averages the overall capac-
ity impact of early discharges on patients in group G
and ãTOTAL_PEAK_LOSG estimates the peak capac-
ity impact of early discharges on patients in G:

ãTOTAL_LOSG =
1
nG

∑

i∈G

ãTOTAL_LOSi1

ãTOTAL_PEAK_LOSG =
1
nG

∑

i∈G

ãTOTAL_PEAK_LOSi1

where nG is the number of patients in G.
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Table 5 Effect of Occupancy on Length of Stay

Coefficient Model 1 Model 2 Model 3

Intercept 304399 (0.5105)∗∗∗ 304 (0.4375) 303453 (0.4127)∗∗∗

BUSY −001693 (0.0603)∗∗∗ −001715 (0.0601)∗∗∗ −001827 (0.0603)∗∗∗

NYHA 1 −002512 (0.0953)∗∗∗ −002445 (0.0946)∗∗∗ −002559 (0.0947)∗∗∗

NYHA 2 −000952 (0.0941) −000967 (0.0936) −001121 (0.0935)
NYHA 3 000714 (0.0899) 000674 (0.0897) 000629 (0.0901)
AGE 1 −001308 (0.3936) −00123 (0.3918) −002107 (0.3929)
AGE 2 000424 (0.3942) 000575 (0.3934) −00026 (0.3946)
AGE 3 000716 (0.3924) 000818 (0.3925) −000037 (0.3938)
AGE 4 00114 (0.3962) 001248 (0.3966) 000304 (0.398)
GENDER 001592 (0.0567)∗∗∗ 001589 (0.0564)∗∗∗ 001698 (0.0564)∗∗∗

CH_PULM_DIS 000966 (0.0718) 000931 (0.0717) 001001 (0.0715)
EXTRA_CARD_ART 000706 (0.0745) 00069 (0.0746) 000821 (0.0742)
NEUR_DYSF 000026 (0.067) 000012 (0.0669) 000284 (0.0665)
RECENT_MYCR_INF 001112 (0.1315) 001146 (0.1314) 001447 (0.1314)
PREV_CARD_SURG 000344 (0.0589) 000427 (0.0577) 000477 (0.0576)
SERUM_CREAT 00214 (0.1081)∗∗ 002086 (0.1076)∗∗ 001921 (0.1077)∗∗

ACT_ENDCRDT 000417 (0.1046) 000624 (0.1025) 000598 (0.1025)
CRIT_PRE-STATE 001623 (0.065)∗∗ 001617 (0.0647)∗∗ 001575 (0.0651)∗∗

UNST_ANG −001171 (0.1245) −001218 (0.1243) −001564 (0.1236)
LV_DYS 000503 (0.0734) 000515 (0.0729) 000336 (0.073)
PULM_HYPER 004889 (0.4095) 00493 (0.4091) 004804 (0.4088)
EMER 002313 (0.0779)∗∗∗ 002403 (0.0769)∗∗∗ 002494 (0.0748)∗∗∗

OTHER_CAB 00267 (0.115)∗∗ 002726 (0.1149)∗∗ 002713 (0.1148)∗∗

SURG_THOR 002094 (0.0697)∗∗∗ 00217 (0.0687)∗∗∗ 002257 (0.0686)∗∗∗

POSTINF_RUPT 003805 (0.33) 003498 (0.3298) 003562 (0.3302)
CAB 000165 (0.1054) 000114 (0.1051) 000052 (0.1055)
AORTIC_VALVE −001724 (0.0633)∗∗∗ −001737 (0.0632)∗∗∗ −001778 (0.0625)∗∗∗

MITRAL_VALVE 000059 (0.0722) −000007 (0.0722) 000025 (0.0723)
PULM_VALVE 001247 (0.3324) 001148 (0.3326) 00118 (0.3327)
INSURANCE −000175 (0.2678)
MEDICAID 002919 (0.4482)
MEDICARE −000013 (0.2737)
DAY Included Included Not included
MONTH Included Included Included
Log-likelihood (Pr > �2) <0.001 <0.001 <0.001

Note. Standard errors are shown in parentheses.
∗∗, ∗∗∗Significant at the 5% and 1% confidence levels, respectively.

7. Results
We find that the occupancy level in the ICU has a
significant impact on patient length of stay. When
we estimate Equation (2) by the method of maxi-
mum likelihood, we find that the coefficient estimate
(�) for the explanatory variable indicating that the
ICU is busy (BUSY = 1) is −00169 (Table 5, Model 1).
For a patient discharged from a busy ICU, this cor-
responds to a length of stay that is 16% shorter
than that for a comparable patient discharged from a
low-occupancy ICU. The effect of the occupancy on
the length of stay is also evident from nonparamet-
ric Kaplan–Meier estimates of the aggregate survival
functions generated for busy and nonbusy estimates
shown in Figure 2. This finding is in concord with
the observations of physicians and nursing staff, who
indicated to us that when the ICU gets busy, the least
severe patients are discharged faster, as long as there
is no significant risk to the patients. We also find that
the insurance status of the patient (Model 1) or the

effects of monthly and daily seasonality (Model 2)
have no significant impact on the effect of occupancy
on the length of stay (Hypothesis 1).

We next study the impact of the early discharges
on the likelihood that a patient has to revisit the
ICU. From our evaluation of the regression equation
(5), we estimate the coefficient (�) for the explana-
tory variable measuring early discharge (LOS5 to be
−0006 (Table 6). This provides support for Hypoth-
esis 2 that an early discharge is associated with an
increased likelihood of a bounce-back. Our instru-
mental variable estimator �IV is −0076. For the aver-
age patient, the probability of a bounce-back is 14%.
This corresponds to a normal distribution’s z-statistic
value of −1008. The IV estimate of −0070 suggests
that for this average patient, an early discharge by
day raises the z-statistic value to −0032, which cor-
responds to a probability of bounce-back of 3704%.
An early discharge by one day is thus associated
with an increase in the probability of a bounce-back
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Figure 2 Effect of Occupancy on Length of Stay
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by 2304%. This larger estimate of �IV is consistent with
our speculation that unobserved patient-level risk fac-
tors would lead us to underestimate the impact of
an early discharge on the likelihood of a bounce-back
had we simply used the probit estimator in (5). The
medical control variables that are statistically signifi-
cant are all positive. Because the incidence of any of
these medical controls is associated with higher sever-
ity levels, this finding is consistent with the estab-
lished medical literature.

We next examine the impact of the increased rate of
bounce-back on ICU capacity usage. The second col-
umn of Table 7 displays the average of ãTOTAL_LOSG

Table 6 Effect of Early Discharge on Likelihood of Bounce-Back

Coefficient Probit estimate (SE) Probit IV estimate (SE)

Intercept −1048 (0.37)∗∗∗ 0052 (0.71)
LOS (�) −00061 (0.039)∗ −00762 (0.075)∗∗∗

GENDER 0011 (0.11) 0022 (0.072)∗∗∗

CH_PULM_DIS 00035 (0.14) 0016 (0.093)∗

ACT_ENDCRDT 00054 (0.21) −00037 (0.14)
EXTRA_CARD_ART 0030 (0.14)∗∗ 0025 (0.14)∗

NEUR_DYSF −00012 (0.31) 00033 (0.088)
RECENT_MYCR_INF 00058 (0.244) 0011 (0.16)
SERUM_CREAT 0024 (0.18) 00035 (0.18)
CRIT_PRE_STATE 0026 (0.12)∗∗ 00293 (0.14)∗∗∗

UNST_ANG 0019 (0.21) −00023 (0.18)
LV_DYS 0013 (0.14) 0016 (0.09)∗

EMER 0023 (0.14)∗ 0029 (0.14)∗∗

OTHER_CAB 0014 (0.15) 0022 (0.10)∗∗

SURG_THOR 0040 (0.13)∗∗∗ 0019 (0.19)
POSTINF_RUPT 0043 (0.64) 0062 (0.49)
Log-likelihood(Pr > �2) <0.001 <0.001

Note. Standard errors are shown in parentheses.
∗, ∗∗, ∗∗∗Significant at the 10%, 5%, and 1% confidence levels, respectively.

for the patients each group G. Group 1 contains the
least severe patients, whereas group 4 contains the
patients scoring in the highest range of the risk score.
We should note that the severity level is based on the
presurgery condition and diagnosis of the patient, not
their medical condition at the time of discharge from
the ICU. Given that the measures of severity (age,
gender, and procedure type) are fixed during a hos-
pital stay, and given that we do not observe time-
varying health status of patients, our severity mea-
sure is fixed for a given patient’s stay. For each of
the groups, capacity is initially saved by discharging
a patient early, as indicated by the negative values
for ãLOSG. Similarly, ãREVISITG is positive for all
of the groups, indicating that revisits take up valu-
able capacity. In general, ãREVISITG is higher for
patients in the higher risk categories. We also find that
ãTOTAL_LOSG has a statistically significant negative
value for group 2, but a positive value for group 4.
This means that the early discharge of group 2
patients freed up total bed days, despite the bounce-
backs. On the other hand, for group 4 patients, the
resulting bounce-backs are lengthy, resulting in a net
increase in the total bed days used. One possible
explanation for this effect is that complications of the
low-severity patients can generally be handled in the
step-down unit, obviating the need for a costly revisit
to the ICU. However, any complications developed
by higher-severity patients in the step-down unit call
for an increased level of monitoring and a subsequent
bounce-back to the ICU. Because the high-severity
patients are also associated with longer revisit stays,
their net total length of stay (ãTOTAL_LOS) increases.

In estimating ãTOTAL_PEAK_LOSG we do not find
statistically significant results for groups 1 and 3.
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Table 7 Effect of Busy Admission on Length of Stay (Hours)

Group (G) ãLOSG ãREVISIT G ã4REVISIT × REVISIT _BUSY 5G ãTOTAL_LOSG ãTOTAL_PEAK _LOSG

1 −0069 3010 2016 2041 1048
420485 420785 410905 430985 430165

2 −1104∗∗∗ 3028 1039 −8010∗ −9098∗∗∗

420335 430355 410275 440245 420725
3 −3015 6026∗ 5093∗∗∗ 3011 2078

430195 430695 410895 440995 430495
4 −4044∗∗∗ 33083∗∗∗ 19071∗∗∗ 29039∗∗∗ 15026∗∗

430065 490635 460435 4100655 460865

Notes. Standard errors are shown in parentheses. The 1,036 risk-adjusted patients are split uniformly across groups 1–4.
A total of 541 of the patients fall into the BUSY designation.

∗, ∗∗, ∗∗∗Significant at the 10%, 5%, and 1% confidence levels, respectively.

The peak capacity estimate ãTOTAL_PEAK_LOSG is
positive for group 4, but not for group 2. In particu-
lar, peak capacity is reduced by 15.26 hours on aver-
age as a result of aggressive discharge in group 4.
However, for group 2 patients, the early discharges
increase peak capacity. Our results suggest that if
an early discharge policy were to be adopted in an
effort to increase throughput, they should be applied
to group 2 patients. However, our analysis does not
allow us to determine why this group of patients dif-
fers from the other groups, and we defer this exami-
nation to future research.

8. Model Validations and Robustness
In keeping with prior work in the medical litera-
ture, we used the Weibull distribution to describe the
length of stay in model (2). One advantage of the
Weibull model is that it provides the flexibility for
the underlying hazard rates to be either increasing or
decreasing. Nevertheless, the estimation of � is sensi-
tive to the distributional assumptions and the related
underlying hazard rates. To provide a test of robust-
ness for the validation of Hypothesis 1, we use the
Cox proportional hazard model. This semiparamet-
ric approach frees us from having to make distribu-
tional assumptions and allows the hazard rate to vary
with time. The instantaneous hazard rate h4t5 for a
patient’s discharge from the ICU can be expressed as

h4t5= h04t5exp4�hBUSY+ XÂh51 (7)

where h04t5 is the baseline hazard function that is
allowed to be time varying, and �h provides an esti-
mate for the effect of BUSY on the hazard rate. We
estimate (7) by the method of partial maximum likeli-
hood (Cox 1972). We estimate �h to be 0020 (Table 8).
This corresponds to a hazard ratio of 10226. In other
words, regardless of the underlying evolution of the
baseline hazard rate, we find that the instantaneous
hazard rate of a patient’s discharge from the ICU
increases by 2206% for a patient from a busy ICU.

Because the increase in hazard rate is equivalent to a
reduction in the length of stay, this finding provides
support for Hypothesis 1.

A potential confounding effect in the estimation
of � in (2) arises if the hospital selectively operates
on patients with lower anticipated ICU stay when
the ICU is busy. This endogeneity could lead to a
bias of our estimate for the coefficient of BUSY. We
rule out the possibility of selection bias by estimat-
ing the correlation between occupancy in the ICU
and the level of preoperative severity, as measured by
the New York Heart Association Severity Index. The
resulting correlation coefficient is not statistically dif-
ferent from zero. Thus there does not appear to be
selective severity-based ICU admissions based on the
occupancy level. One reason for this is that it is diffi-
cult (if not impossible) for the admitting personnel to
predict the future ICU occupancy level at the time of
scheduling elective procedures. We also examined the
correlation between the number of admissions and
the occupancy during a shift; we find that the cor-
relation is statistically insignificant, a further indica-
tion of the lack of selective admissions based on ICU
occupancy.

In our analysis, the explanatory variable BUSY was
estimated at the time of discharge. However, one
could argue that it is not simply the occupancy at the
time of discharge, but also the occupancy in the ICU
during the entire stay that determines the discharge

Table 8 Effect of Occupancy on Hazard Rate of Discharge

Coefficient Model 1 Model 2 Model 3

BUSY (�h) 00204∗∗∗ 00206∗∗∗ 00215∗∗∗

4000795 4000795 4000785
Payor type Included Not included Not included
Monthly and daily seasonality Included Included Not included
Log-likelihood (Pr > �2) <0.001 <0.001 <0.001

Notes. Standard errors are shown in parentheses. Control variables (pro-
vided in the online supplement) are not displayed.

∗∗∗Significant at the 1% confidence level.
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decision. To further validate this definition of BUSY,
we estimated Equation (2) with BUSY measured dur-
ing times of admission. As a further test for robust-
ness, we also estimated BUSY at the start of the shift
during which a patient was discharged. In estimating
(2) and (5), we find that the coefficients for � and �
are negative, suggesting that our findings are robust
to the times at which occupancy is estimated.

Finally, we find that controlling for day of week of
admission or the month of admission does not have a
significant impact on the discharge decision. In addi-
tion, the patient’s insurance status (payer type) has a
small impact on the length of stay.

When the ICU is busy, the alternative to discharg-
ing patients early is to cancel procedures. To examine
whether procedure cancellations occurred, we inves-
tigated to what extent the patient arrivals were cor-
related with the occupancy in the ICU. We estimated
the model AdmitVolShift = a + b ∗ OccupancyShift, where
AdmitVolShift is the admission volume for a given shift,
and OccupancyShift is the occupancy at the start of the
shift. We found a lack of correlation (the intercept a
and coefficient b are reported in Table 9).

When we discussed this issue with doctors from
our research site, we obtained the following responses
that confirmed our empirical examination: “There are
times that we cancel elective surgical cases as a result
of ICU occupancy—but this is very rare. I would
say that it happens at most once a month.” As far
as early discharges are concerned, one doctor com-
mented: “Of course, we do early discharges whenever
we get full. We try to coordinate with the floors or
look for other ICU beds, but when we are full and
have a new patient arriving, what else do you expect
us to do?” Similarly, his colleague from another teach-
ing hospital in town observed: “It is quite rare to can-
cel operations. Getting in an extra patient when we
are busy usually works out somehow. There is always
some slack in the system 0 0 0either some patients can
be pushed out or patients can board for a time in
another ICU in the hospital before going to the floor.”
And, another surgeon elaborated further: “Canceling
a surgery is really rare. I remember one instance from
two years ago. We were so full that we decided to
cancel a scheduled OR procedure and it was a mess.
The family of the patient, the doctor scheduled for

Table 9 Effect of ICU Occupancy on Admissions Volume

Coefficient All patients Emergency patients Elective patients

Intercept 3043 (0.456)∗∗∗ 00889 (0.193)∗∗∗ 20673 (0.428)∗∗∗

Occupancy 000485 (0.040) −000064 (0.017) 000513 (0.038)
R2 0.004514 0.000453 0.0059

Note. Standard errors are shown in parentheses.
∗∗∗Significant at the 1% confidence level.

the surgery, and the hospital administration, every-
body was upset. We always find a way to fit a new
patient in.” Also, financial issues were pointed to, as
illustrated by yet another quote: “Elective procedures
are typically associated with large revenues. You don’t
just go and cancel such procedures.”

In this round of interviews, all interviewees con-
firmed that their discharge decision is strongly influ-
enced by occupancy. Thus, although it is theoretically
possible to use procedure cancellations as a way to
match supply with demand, this does not happen fre-
quently. Given the fixed inflow of patients and the
capacity constraint, the other way to match supply
with demand is the early discharge.

9. Conclusion and Future Research
In this paper we looked at the management of bed
capacity in a cardiac intensive care unit. To determine
the capacity needs of individual patients, we esti-
mated a model of patient recovery that accounts for
numerous patient-level risk factors. From this model,
we found that the ICU rations its capacity during
busy periods by discharging patients earlier.

However, we also found that an early discharge led
to an increased likelihood of a patient revisit; that is,
aggressively discharging patients to the step-down
unit to free up capacity led to an increased likelihood
of patients revisiting the ICU during the same hospi-
tal stay. In addition, we found that the revisits tended
to incur long lengths of stay.

This observation raises the question of whether
the ICU should keep patients longer the first time
to reduce the probability of an incidence of revisit.
Using the method of matching estimators, we esti-
mated the additional length of stay needed for the
initial patient visit, i.e., the “right first time” length
of stay that would have been realized had the ICU
not been busy. By comparing the total peak capacity
usage for patients who were discharged early versus
those who were not, we show that an aggressive
discharge policy frees up peak capacity in the ICU
only for lower-severity patients. For the high-severity
patients, however we find that an increased num-
ber of readmissions occur when the ICU is capac-
ity constrained, thereby effectively reducing peak bed
capacity. Thus, in our study of ICU capacity, the
insights obtained from the quality management liter-
ature favoring “doing it right the first time” dominate
the benefits of capacity rationing for high-severity
patients. On the other hand, the hospital would be
able to increase its patient throughput by selectively
discharging the lower-severity patients earlier.

We should note that this study is a first step
toward quantifying the capacity trade-offs in dis-
charge decisions. In practice, various unobserved fac-
tors determine the patient’s recovery path and the
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exact circumstances governing the patient’s discharge,
although known to the medical experts at the time of
discharge, are unknown to us as researchers. Many
decisions are made not based on raw numbers and
data, but on the basis of more subjective medical
expertise developed over years of practice. Therefore,
although we do not expect the results of our analy-
sis to be the primary drivers of discharge decisions,
we do hope that our findings can serve as additional
information that the care providers can incorporate in
their decision making.

Future research in operations management could
look at ways to determine the optimal discharge pol-
icy with the objective of maximizing patient through-
put. Future medical research is needed to build more
sophisticated models of patient recovery that enable
the hospital to customize the discharge decision to
the medical profile of a patient while considering ICU
occupancy (e.g., see Martin et al. 2005, Swenson 1992).
In particular, various dimensions of patient recovery
and quality of care both inside the ICU and after dis-
charge need to be examined. Policy changes in the
United States, including the passage of the health-
care reform bill, could lead to increased demand for
health-care services. The ability to effectively man-
age the increase in volume of patients while oper-
ating under resource capacity constraints is likely
to become even more important. In this paper, we
address the short- and medium-term implications of
discharge decisions from the ICU. However, it is
important to also examine the effect on the long-term
well-being of a patient. For example, future stud-
ies could look at the effect on hospital revisits and
rates of morbidity and mortality. One of the fascinat-
ing aspects of studying ICU operations is that both
of these venues for future research essentially corre-
spond to two sides of the same coin—only by build-
ing interdisciplinary models that combine medical
variables with operations management decisions will
we be able to improve the quality and productivity of
our health-care system.

Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://msom
.journal.informs.org/.
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