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Much of prior work in the area of service operations management has assumed service rates to be exogenous
to the level of load on the system. Using operational data from patient transport services and cardiotho-

racic surgery—two vastly different health-care delivery services—we show that the processing speed of service
workers is influenced by the system load. We find that workers accelerate the service rate as load increases.
In particular, a 10% increase in load reduces length of stay by two days for cardiothoracic surgery patients,
whereas a 20% increase in the load for patient transporters reduces the transport time by 30 seconds. Moreover,
we show that such acceleration may not be sustainable. Long periods of increased load (overwork) have the
effect of decreasing the service rate. In cardiothoracic surgery, an increase in overwork by 1% increases length of
stay by six hours. Consistent with prior studies in the medical literature, we also find that overwork is associ-
ated with a reduction in quality of care in cardiothoracic surgery—an increase in overwork by 10% is associated
with an increase in likelihood of mortality by 2%. We also find that load is associated with an early discharge
of patients, which is in turn correlated with a small increase in mortality rate.
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1. Introduction
Over the last decade, most hospitals have witnessed
a substantial increase in fixed costs, largely reflecting
growing expenses for new technologies and liability
insurance. Over the same period, hospitals also had
to face a substantial decrease in per-case reimburse-
ments, reflecting the transition from fee for service
reimbursements to contractual reimbursements due to
managed care. As a result of these two trends, hospi-
tals have come under increasing pressure to operate
at very high levels of utilization. From a macro per-
spective, high utilization is a desirable system prop-
erty for a hospital and its employees, as it spreads the
fixed cost over a larger volume of patients. However,
recent research conducted with a more micro perspec-
tive (Green 2004) has demonstrated that operating at
high levels of utilization has many operational impli-
cations, including long waiting times.
Most of these micro level models are based on

queueing analysis (Green 2004, Smith-Daniels et al.
1988). Such models analyze patient flows and, in par-
ticular, patient waiting times based on information
about the care capacity of the process, the variability
of its service times, and the behavior of a stochastic

demand for care. A high level of utilization (a high
level of demand relative to the available capacity)
leads to a dramatic increase in wait times and—if
waiting is not feasible due to the emergency of the
case or due to a limited amount of space—a reduc-
tion in patient flow (i.e., the number of patients cared
for in a unit of time). Collectively, queueing analy-
sis in health care has emerged as an active area of
research with a clear potential for impacting health-
care practice.
A central assumption in this existing literature is

that the service time, i.e., the time it takes a resource
to care for a patient, is independent of the state of
the process including the current workload. In this
paper we show this might not always be the case.
Consider the data shown in Figure 1. As a motivating
preview to one of our results, the figure shows the
relationship between the risk-adjusted1 length of stay
of cardiothoracic surgery patients as a function of the

1 In the medical literature, the risk-adjusted length of stay is com-
puted by first determining how individual patient risk factors pre-
dict the length of stay, and then generating an expected length of
stay for each patient based on their specific risk factors.
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Figure 1 Length of Stay as a Function of Census
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Notes. Census is defined as the number of patients in the cardiac unit at the
time that a patient is admitted. Length of stay (LOS) is the total number of
days a patient spends at the hospital. Dashed lines represent 95% confidence
intervals.

workload in the cardiothoracic surgery unit2 at the
time of discharge. We observe a clear pattern indicat-
ing that the service time (duration the patient is in the
unit) decreases with an increase in workload. The unit
thus increases its throughput when it is busy. In other
words, its level of care capacity seems to be adaptive
to higher levels of workload. From an empirical per-
spective as well as from the perspective of hospital
management, the data shown in Figure 1 raises a set
of interesting research questions. (1) What drives this
increase in processing speed? Is the hospital simply
discharging patients prematurely, or is there evidence
that the same work gets done faster? (2) Are there any
implications for the quality of care provided? (3) Can
the resources in the hospital sustain this increased ser-
vice rate or does there exist an effect of overwork?
We address these three questions by conducting a

detailed econometric analysis of two care processes in
a major U.S. teaching hospital. In particular, we look
at process and outcome data of some 3,000 cardio-
thoracic surgery patients. We measure the length of
stay for each patient and relate it to a set of covari-
ates, including current workload and the cumulative
fatigue, or workload burden on service workers. We
address the alternative explanation of Figure 1 that
the hospital simply discharges patients prematurely
in two ways. First, we look at risk-adjusted mortal-
ity data to investigate how workload and overwork
lead to changes in mortality. Second, we also study
another care process in the hospital that is not a medi-
cal process and does not provide the option of simply
cutting the service time short at the potential cost of
quality. In particular, we look at the service times of
over 17,000 requests for patient transport and analyze

2 The cardiothoracic surgery unit is the self-contained hospital unit
that includes (i) admissions; (ii) diagnostic testing (catheterization
lab, electrocardiogram, etc.); (iii) preoperative care, such as prep-
ping the patient for surgery; (iv) surgery; (v) postoperative care
(e.g., time in the intensive care unit); and (vi) discharge.

how they change with workload and the subsequent
overwork.
This research design allows us to make the

following three contributions. First, we measure the
performance of hospital employees and show that
employees adjust their service rates with changing
levels of load. This is, to the best of our knowledge,
the first empirical test of the insights obtained from
the optimal queueing control literature. In cardiotho-
racic surgery, we find that a 10% increase in load
leads to a reduced length of stay (service time) of over
two days (about 20%). Similarly, we find that patient
transporters speed up their tasks by 30 seconds (about
2.4% of service time) if load increases by 20%. Sec-
ond, our study investigates the impact of workload
as well as overwork on the quality of care, a relation-
ship that is potentially a matter of life or death in a
hospital. Overwork is defined as the excess workload
beyond an expected amount of workload over a given
period of time. Specifically, we establish that patients
admitted to an overworked unit are associated with
an increased risk of mortality. On average, a 10%
increase in overwork is associated with a 2% increase
in risk of mortality. Third, we show that although hos-
pital employees can respond to increased workload
by increasing their productivity in the short run, such
an acceleration in general is not sustainable. After a
duration of exceptionally high workload, employees
are subject to the aftereffects of overwork. This effect
of overwork could outweigh the higher service rates
discussed above. A sustained level of 1% above aver-
age load for a week in cardiothoracic surgery units
leads to an average increase in length of stay of almost
six hours (2%).
If hospital employees are indeed capable of adjust-

ing their service rate as a function of the workload,
this clearly has substantial implications for the man-
agement of care capacity. If service workers can adapt
during periods of high workload by working faster,
it may not be necessary to hire additional capac-
ity during busy periods. Also, instead of relying on
safety capacity to buffer against stochastic increases
in demand, the hospital could rely on its staff’s abil-
ity to temporarily accelerate their work. However,
our empirical findings suggest additional managerial
considerations that need to be made. Although such
adaptive behavior from workers may appear desir-
able in the short run, one needs to also consider
the quality and patient safety implications of such
behavior. In addition, temporary worker speedup
made come at the cost of future slowdown after the
onset of fatigue. This could lead to a net total decline
in performance. Decision makers should thus take
into consideration the full set of possible implications
of a temporary increase in service rates.
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The remainder of this paper is organized as fol-
lows. In §§2 and 3, we present relevant literature and
develop our hypotheses for a general model of service
operations, respectively. We then operationalize our
theory to the two hospital settings we study. Section 4
describes our research setting, the econometric model
specification, and the results for our study of patient
transporters. In §5, we report the same information
for the cardiac surgery setting. We conclude with dis-
cussions and future avenues for research in §6.

2. Literature Review
The operations research literature has created a num-
ber of tools that directly or indirectly relate to the
management of care capacity and its utilization (see
Green 2004 for an overview). At the strategic level,
decisions need to be made with respect to sizing
the care capacity. This includes choosing occupancy
rates (e.g., Smith-Daniels et al. 1988, Huang 1995,
Green and Nguyen 2001) and making staffing deci-
sions (e.g., Aiken et al. 2002, Kwak and Lee 1997,
Green and Meissner 2002). At the tactical level, deci-
sions need to be made with respect to scheduling and
sequencing cases (e.g., Gerchak et al. 1996) as well as
with respect to allocating capacity to various demand
types (e.g., Green et al. 2006). Much of this prior body
of literature, however, assumes that the service rate is
exogenous to the level of capacity utilization. In this
paper, we present and validate a framework of ser-
vice operations where workers vary their service rates
with the state of the system. There also exists a signif-
icant body of literature dealing with optimal payment
systems for health services, as reported by Newhouse
(1996). Many of these studies (e.g., Fuloria and Zenios
2001) explore the effect of various types of payment
arrangements that incentivize health-care organiza-
tions into providing higher quality of services. Higher
quality is often achieved only at a higher cost, of
which workload and service rates are important con-
tributors. This stream of literature seeks to exam-
ine how, in the presence of unobserved cost factors,
appropriate incentives can still be provided to hos-
pitals to induce higher quality. In addition to this
general research on hospital operations, our analysis
builds on two areas of prior research in operations
management.
First we draw on the literature on the optimal

control of queues. For example, Crabill (1972) and
Bertsekas (2000) examine systems in which the ser-
vice rate is adjusted dynamically as the queue length
changes.3 Some of these models study the dynamic

3 Although previous work (e.g., Green 1984) models a queueing
system that involves multiple servers, as far as we are aware, there
are no established optimal policies on service rate when multiple
servers are involved.

control of a single-server queueing system that has
Poisson arrivals and exponentially distributed service
times. There are costs associated with an increase in
the queue length and in an increase in the service rate.
The objective is to choose the optimal service rate that
minimizes the average sum of these two costs over a
given planning horizon. In other words, a key objec-
tive of this body of literature is the development of
service rate policies that effectively balance the costs
of waiting with the costs of an accelerated service
rate. Under relatively general assumptions, Stidham
and Weber (1989) prove the existence of a stationary
policy, i.e., one in which transition to a given state
elicits the same service rate. Although closed form
solutions for the optimal service rate as a function of
queue length are not obtainable, George and Harrison
(2001) develop a novel method for computing the
optimal policy for the service time as a function of
the queue length, subject to certain restrictions on the
two cost functions. In such a setting, the optimal ser-
vice rate is a nondecreasing function of the length of
the queue. The intuition for the monotone policy is
that working faster by a given unit rate has a big-
ger impact on total waiting cost when the queue is
longer. In a similar vein, Berk and Moinzadeh (1998)
also allow the service rate to vary, and normatively
explore the impact of the option of a shorter service
time on effective capacity. Even though the results in
this body of literature are well established, there have
been no empirical validations of this effect. We con-
tribute to this line of research by providing explicit
evidence of the adaptive behavior in two health-care
services. For both services, although the underlying
waiting costs and service rate costs are not estimated,
we show that service rates increase when the load on
the system increases.
Our work also extends prior studies of the impact

of production system design on the productivity
of employees. For example, using lab-based experi-
ments, Schultz et al. (1998, 1999) consider serial pro-
duction systems in which adjacent workers in a serial
assembly line can observe each others’ productivity,
as measured by inventory levels between them. A key
insight from this work is that workers tend to work
faster or slower depending on the work in process
inventory. Our objective in this paper is to demon-
strate using actual operational data from a field based
study at a hospital, that health-care delivery workers
also demonostrate such adaptive behavior in response
to the amount of workload. In addition, the previous
studies have not considered the aspects of fatigue that
accompany service rate acceleration, or the impact
on the quality of service. Our study augments the
existing body of work to include the dimensions of
fatigue and quality. Powell and Schultz (2004) show
that when assembly line workers adapt to variations
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in load, they also improve the overall throughput of
the system. One of the implications of our study is
that the adaptive behavior of health-care providers
increases the overall process flow of patients from the
hospital.

3. Hypothesis Development
Our theoretical framework is based on the relation-
ships between service times, workload, overwork,
and service quality. All of these measures are defined
for the discrete unit of work, denoted i. We define
load (LOADi = REQUESTSi/RESOURCESi) as the
total number of requests or jobs (REQUESTSi) in
the system divided by the total number of resources
(RESOURCESi) at that time that unit of work i is
in the system. In other words, LOADi provides a
measure of the level of utilization of the system’s
resources that is connected with the unit of work i.
We define SVCTIMEi to be the service time taken

to process a request i. This definition of service time
does not include any time spent waiting for the ser-
vice to begin. Our hypothesis is that a higher work-
load leads to a reduction in service time; i.e.,

� SVCTIME
� LOAD

< 0� (1)

Such a behavior can be rational from the worker’s
perspective if each service worker’s utility is decreas-
ing in the level of waiting time at a greater rate
than the decrease in the utility associated with effort
involved in obtaining a faster service rate, as theo-
retically established in the literature on the optimal
control of queues.
Although productivity gains may be achieved in

the short term as we hypothesize, high service rates
may not be sustainable for longer periods of time.
During periods of increased load, a worker may be
motivated to work fast, but eventually fatigue effects
may start to dominate, leading to increased service
times. Early research in the field of ergonomics (Cakir
et al. 1980) has shown that as fatigue rises, pro-
ductivity falls. Tanabe and Nishihara (2004) use lab
experiments to study changes in productivity and
find that even though people are highly motivated
in short term experiments, they become tired and
performance deteriorates over a longer time frame
as fatigue kicks in. Likewise, a key finding in the
studies by Caldwell (2001) and Setyawati (1995) is
that fatigued workers exhibit diminished productiv-
ity. Figure 2 summarizes these hypotheses.
To study the phenomenon above, we construct

the measure OVERWORKi�K , which we define to be
an increasing function in the difference between the
observed LOADi and the average over K units of time
prior to the arrival of unit of work i in the system. In

Figure 2 Effect of Load and Overwork on Service Time

LOADi

SVCTIMEi

OVERWORKi, K =
f (LOADi – 1, LOADi – 2, … , )LOADi – K

other words, when a unit of work i arrives at the sys-
tem after a period of sustained levels of high LOAD
for K units of time, our measure of OVERWORKi�K

will be high. We argue that this holds for a broad set
of values of K used to estimate OVERWORK. Based
on the discussions above, we propose that the service
time is increasing in the overwork; that is,

� SVCTIME
�OVERWORK

> 0� (2)

We next consider the impact of the above effects of
load, overwork, and service time on the quality of ser-
vice (QUALITY), which is of paramount importance
in health-care delivery. During periods of high LOAD,
resources are more thinly spread out. We hypothesize
that this decrease in the availability of resources can
lead to a decline in quality, that is,

�QUALITY
� LOAD

< 0� (3)

Similarly, we argue that a patient who is admitted
to an overworked unit has a higher likelihood of
encountering a quality lapse, as service workers who
are more fatigued are more prone to making mistakes;
that is,

�QUALITY
�OVERWORK

< 0� (4)

Finally, we hypothesize that when service times are
decreased (after controlling for patient specific fac-
tors), and patients are discharged early, this could
have an adverse impact on the quality of care; that is,

�QUALITY
� SVCTIME

> 0� (5)

To test the hypotheses illustrated by Figure 3, we
chose two vastly different kinds of services—patient
transportation and cardiothoracic surgery—at a major
U.S. teaching hospital. Patient transportation is, rela-
tive to other health-care tasks, simple, and the task
of moving a patient from one part of the hospi-
tal to another is rather mechanical in nature. Typ-
ically each transport lasts less than half an hour.
In sharp contrast, service workers in cardiothoracic
surgery require advanced medical knowledge and
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Figure 3 Effect of Load, Overwork, and Service Time on Quality

LOADi

QUALITYiSVCTIMEi

OVERWORKi, K =
f (LOADi – 1, LOADi – 2, … , )LOADi – K

extensive training. The individual tasks in cardiotho-
racic surgery are more complicated, and the average
patient length of stay is around two weeks.
A study looking at patient transport alone might

be dismissed as not being applicable to more medi-
cal and diagnostic processes. A study looking at car-
diac care alone might be dismissed with the claim
that patients are simply discharged prematurely as
opposed to receiving care at a faster service rate. Repli-
cating our research design across these two different
care processes hence increases the generalizability of
our findings. We provide context-specific justifications
for the hypotheses outlined, followed by our findings
for the two studies.

4. Patient Transport Study
Patient transporters are hospital employees who per-
form the crucial role of taking a patient from one part
of the hospital to another. The hospital that we study
maintains a pool of between 2 and 26 transporters,
depending on the time of day. When a patient is ready
for transport, the nurse in charge of the hand-over sub-
mits an electronic request. The request then is placed
in a queue to be processed by a dispatcher. When a
transporter is available, the dispatcher assigns a trans-
porter to a specific request. After a transporter arrives
at the transport location, the transport process begins.
We operationalize the variables defined in the pre-

vious section as follows. REQUESTSi is the total num-
ber of transport requests, and RESOURCESi is the
number of transporters working on the shift at the
time that request i arrives. LOADi is the fraction of
transporters who were busy during the hour that
transport i was started. So if 5 out of 10 transporters
were occupied at the time that service i was rendered,
LOADi = 50%. Note that our definition of LOADi cor-
rects for anticipated increases in demand that were
addressed by an increase in scheduled capacity. For
example, the hours between 9 a.m. and 10 a.m. on
a regular weekday, show three times more transport
requests than there are between 9 p.m. and 10 p.m.
However there are also two and one-half times more

Table 1 Transport Descriptive Statistics

Measure Mean Standard deviation Median

SVCTIME (minutes) 12�6 7�75 10�35
LOAD 0�755 0�21 0�73
OVERWORKK=4 0�001 0�21 0�02

transporters staffed during the busier period. The
SVCTIMEi for each transport i is the time between the
patient leaving the starting location and arriving at
the final destination. This does not include any wait-
ing time for the transporter to arrive.
We define OVERWORKi�K at the level of the trans-

porter, and the measure for OVERWORKi�K is com-
puted only if the transporter performing service i
was on shift for each of the K periods prior to the
start of service i. Let t
i� be the time at which unit i
arrives. To formalize the notion of overwork, we
define OVERWORKi�K , from time t
i�−K up to time
t
i� as

OVERWORKi�K=
1

N
K�i�

i−1∑
j=i−N
K�i�


LOADj−LOADs
j���

where LOADs
j� is the average load over the entire shift
s, and N
K� i� is the number of service requests during
the last K periods up to t
i�. The K periods are mea-
sured in units of hours. For example, suppose that the
expected load during a certain shift is four requests
per worker every hour. However, suppose that for a
particular hour proceeding request i 
K = 1�, the load
has consistently remained at six requests per worker
during which six requests happened to have been
processed. The overwork, OVERWORKi�1 associated
with request i would then equal 
1/6�

∑
6
6 − 4� = 2

requests per worker. In other words, the worker
responsible for transporting request i has already
experienced an additional load of two requests on
average over this time period.
An average transport lasts 12.6 minutes, and the

average load on transporters is 0.76. Table 1 provides
descriptive statistics of the key variables of concern.
To achieve parallelism with the cardiothoracic surgery
study, we sought out possible measures of quality in
patient transport. In speaking to the head of patient
transport services, we found that one source of error
involves the patient being transferred to the wrong
location. The other potential error is a lapse in adher-
ence to specific protocols (for example, with handling
of equipment and supplies). However, these errors are
not captured and collecting this data is not currently
feasible. Thus, although desirable, the quality impli-
cations of speedup are not estimated.

4.1. Econometric Analysis
The variable SVCTIME does not take on negative val-
ues. Thus, we follow the commonly used approach of
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taking the natural logarithm of the variable to reduce
the skewness in distribution. We specify our regres-
sion model as

log
SVCTIMEi� = �0 +Xi�1 +�2 log
LOADi�

+�3OVERWORKi�K + �i� (6)

where �i is the mean zero error term. Xi consists
of a set of variables that control for the underly-
ing heterogeneity in patient characteristics or task
characteristics, or both.4 This includes indicators for
the time of the day (TIME) and day of the week
(DAY), which capture intertemporal differences in ele-
vator availability and hallway traffic as well as spe-
cific information about the transport. Transporters
may be required to use additional pieces of equip-
ment (EQUIP) along the way, including intravenous
medication, oxygen, and other supplies. Transports
also vary in mode (MODE); some patients may
require specialized telemetry beds, whereas others
only need wheelchairs and transport beds. For exam-
ple, a patient transport with a telemetry bed will take
longer than with a wheel chair. For each transport i,
we also correct for the person in charge of the trans-
port (NAME), trip start (START), and end (END) loca-
tions, starting and ending locations for the transporter
(PATH), and type of patient transported (TRIP_TYPE).
Table A1 in the online appendix (provided in the
e-companion)5 provides a list of variables and con-
trols (Xi) for the econometric specification above.
As the load on the system increases in any given

shift, the expected waiting times for transporters also
tend to increase. Speeding up the transport time helps
to somewhat mitigate the increase in waiting times.
Thus, transporters (whose performance is constantly
evaluated through a patient tracking system) have
an incentive to speed up when the load on the sys-
tem increases as outlined in (1). The coefficient of �2
denotes the elasticity of service time with respect to
load. A value of �2 < 0 indicates that servers respond
to high load by reducing the service time, providing
support for (1).
To capture a potentially nonlinear relationship

between LOAD and SVCTIME, we also created a cat-
egorical variable for LOAD for values in the ranges
0–0.3, 0.3–0.5, 0.5–0.65, 0.65–0.8, and 0.8–1 such that
we had approximately similar numbers of observa-
tions within each range. We then estimated (6), replac-
ing log
LOADi� with the categorical specification for
LOADi.

4 The logarithmic transformation of LOAD captures the nonlinear-
ity in the regression function and provides a better model fit, as
demonstrated by the distribution of the residuals. OVERWORK by
construction is not strictly positive.
5 An electronic companion to this paper is available as part of the on-
line version that can be found at http://mansci.journal.informs.org/.

Table 2 Effect of Load and Overwork on Transport Time

Coefficient Model 1 Model 2

Intercept 2�73 2�13
�0�74�∗∗∗ �0�09�∗∗∗

�2 −0�17 −0�12
�0�07�∗∗∗ �0�07�∗

�3 0�09
�0�05�∗∗

R2 0�62 0�62
F -statistic 4.5 (p < 0�01) 4.5 (p < 0�01)

Note. Dummy variables for Xi (provided in the online appendix) are not
displayed.

∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% con-
fidence levels, respectively. Standard errors are shown in parentheses.

Finally, as outlined in hypothesis (2), we expect
OVERWORK to be negatively correlated with the
transport time (SVCTIME). Patient transport is a phys-
ically demanding task, and after a few hours of trans-
porting patients, transporters may exhibit symptoms
of tiredness and fatigue. Thus, a positive value of �3
suggests that overwork leads to a longer service time,
providing support for the hypothesis outlined in (2).

4.2. Results
Table 2 summarizes the results of estimating the
above regression model with service time as a depen-
dent variable based on a sample of 17,000 patient
transports. We find that the elasticity of load on ser-
vice time is −0.12 (model 2). This amounts to approx-
imately 2.4% faster service on average for a 20%
increase in LOAD. This result provides support for
our hypothesis that higher load leads to shorter ser-
vice times.
Next, consider the effect of overwork. In estimat-

ing (6) above, we find that K = 4 yields the best
model fit.6 The regression results in Table 2 show that
the coefficient for OVERWORK (�3) has a value of
0.09 (p-value = 0�05). That, is a 0�1 unit increase in
OVERWORK (or the equivalent of a sustained level
of 0.1 additional load above the expected load for
K = 4 hours) leads to an increase in service time by
about 0.9%. This lends support to hypothesis (2) that
overwork leads to an increase in the service time in
patient transport. Our result is consistent with our
interviews with patient transporters and their man-
agement who reported, based on their personal expe-
rience, that transporters visibly slow down at the
end of busier shifts. At any given point in time,
a worker is subject to the effects of both existing load,
and fatigue effects arising from sustained load in the
immediate past. We find that the correlation between

6 Our estimations were performed with varying values for K. The
final value of K that was chosen yields the best maximum likeli-
hood value.
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LOAD and OVERWORK is 0�295. Load and overwork
have opposing effects, so at any given point in time,
depending on the relative magnitudes of load and
overwork, the net effect might be either a decrease or
an increase in the service rate.

5. Cardiothoracic Surgery Study
Unlike patient transport, cardiothoracic surgery is a
highly specialized service involving numerous care
providers. In our analysis, we observe the lengths
of stay and quality measure of patients who pass
through a single cardiothoracic surgery unit. We
observe the admission and discharge dates for each
patient, which are used to compute the patient length
of stay as well as the daily census. The index i iden-
tifies each unique patient admission. The associated
service time SVCTIMEi is the total length of stay for
the patient from the date of admission to the dis-
charge date. REQUESTSi measures the number of
patients in the unit when patient i was admitted (the
census) and RESOURCESi is the total bed capacity
when patient i arrives at the cardiothoracic surgery
unit. In our period of study, the total bed capacity
remained unchanged. LOADi is thus defined to be
the census divided by the total bed capacity at the
time that patient i is in the hospital. In our prelim-
inary analysis (Figure 1), we looked at the effect of
LOADi at the time of admission. We also computed
alternative measures of LOADi, including a measure-
ment at the time of discharge, and at the midpoint
of the patient’s stay in the hospital. In addition, we
also computed LOADi over a nominal fixed length of
stay for all patients.7 We find that all four measures
of LOADi have a very similar effect on service time
(Table A4 in the online appendix). For the remainder
of this study, we compute LOADi by using the daily
average of load measured over the entire length of
stay of patient i.
In contrast to our transport study, in the car-

diac surgery study there exists no unique individual
worker who performs all tasks related to a particular
patient. Therefore, we estimate OVERWORKi�K at the
level of the hospital unit using the daily load for K
days prior to the admission day for patient i. Let d
i�
be the date on which patient i is admitted. We define
OVERWORKi�K , from time d
i�−K up to time d
i� as

OVERWORKi�K

= 1
N
K� i�

i−1∑
j=i−N
K� i�

LOADj −DAILY_LOADd
j��

where DAILY_LOADd
j� is the average load in the unit
on the day of admission of patient j , and N
K� i� is

7 We thank the review team for suggesting the various measures of
LOAD. The online appendix includes our results for impact of the
various measures of LOAD on the service times.

Table 3 Cardiothoracic Surgery Descriptive Statistics

Measure Mean Standard deviation Median

SVCTIME (days) 12�98 10�69 7
LOAD 0�78 0�086 0�79
OVERWORKK=7 days 0�005 0�07 0�01
MORTALITY 0�068 0�255 0

the number of patient arrivals during the last K peri-
ods up to t
i�. For example, a large positive value of
OVERWORKi�K signifies that the unit has experienced
high levels of load over the K days of observation
prior to the admission of patient i.
As indicated in the descriptive statistics (Table 3),

we see that the average length of stay for a patient
undergoing cardiothoracic surgery is 12.98 days. The
standard deviation of 10.7 days indicates significant
variability in length of stay, which is partly due to
the heterogeneity amongst patients. The average load
of 0.78 is comparable to the average load seen by
transporters.

5.1. Econometric Analysis
We test hypotheses (1) and (2) using the econometric
specification:

log
SVCTIMEi� = �0 +Yi�1 +�2 log
LOADi�

+�3OVERWORKi�K

+�4MON_WED+ �i� (7)

Yi includes a set of variables that control for the
underlying heterogeneity in patient characteristics,
as well as temporal factors such as month of admis-
sion. The patient population includes cardiac patients
that vary widely in length of stay and risk levels.
To account for cardiothoracic surgery specific fac-
tors that influence the SVCTIMEi and outcome, as
measured by the occurrence of postsurgery mortal-
ity (MORTALITYi), we include several clinical preop-
erative risk factors including age (AGEi), sex (SEXi),
race (RACEi), emergency status (EMERi), and vari-
ous specific medical comorbidities and complicating
factors to correct for patient level heterogeneity. We
use two commonly used medical estimates of patient-
specific risk. The measure EUROSCOREi is estimated
on a zero to one scale and captures the preoperative
level of patient risk based on a number of individual
patient risk factors. A similar risk score, developed
by the New York Heart Association (CLASS_NYHAi),
was also available for each individual patient. We also
observe the type of procedure (PROCEDUREi)8 per-
formed, as this has a significant bearing on the length

8 We did not observe individual surgeons involved in the proce-
dures. However, each cardiothoracic procedure is highly special-
ized and is performed by either one or two surgeons. For instance,
mitral valve procedures are operated by only one surgeon. Thus,
PROCEDURE also serves as a proxy for the surgeon.
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of stay. For example, a patient will need a longer
recovery time following a combined valve and bypass
surgery compared to a single bypass surgery. We cor-
rect for temporal factors that could affect the length of
stay (through staffing shortages, during holiday sea-
son, and on weekends, for example) by using indi-
cator variables denoting month (MONTHi) and day
of week (MON_WEDi) of admissions. Finally, we also
observe incidences of a patient having to be rein-
tubated (RE_INTUBATEDi). Reintubation9 occurs if
a patient is put on ventilator support for a second
time. Tables A2 and A3 in the online appendix pro-
vide detailed definitions of all operational and medi-
cal variables.
Because hospitals often cite bed capacity as the pri-

mary reason for the inability to admit new patients,
we believe that bed capacity utilization is a significant
driver of admission and discharge decisions, and ulti-
mately determines a patient length of stay. In other
words, when the system is busy, beds are in greater
demand. Consequently, there is pressure to discharge
patients faster to increase bed capacity. The effect of
an increase in load on reducing the length of stay
thus makes hypothesis (1) appear tenable in the con-
text of a cardiothoracic surgery unit. The coefficient of
�2 denotes the elasticity of service time with respect
to load. A value of �2 < 0 indicates that the unit
responds to high load by reducing patient length of
stay, providing support for the hypothesis outlined in
Equation (1).
Prior research investigating the performance of

health workers has investigated the effect of worker
fatigue on clinical decision making and outcome.
In particular, fatigued and overworked medical resi-
dents and nurses have been observed to create more
medical errors in diagnosis and treatment (e.g., Scott
et al. 2006). For example, Gaba and Howard (2002)
point out that most studies on fatigue show impair-
ment of clinically relevant tasks. We argue that fatigue
could impact the length of stay in two ways—either
because the decision maker would like to take more
time to make the discharge decision,10 or because
fatigued workers are more prone to making medi-
cal errors. We hypothesize that such errors lead to
complications that call for additional rework, which
would further lengthen a patient’s stay. Hypothe-
sis (2) is supported if fatigue leads to an increase in

9 Intubation is the placement of a flexible plastic tube into the
trachea to protect the patient’s airway and provide a means of
mechanical ventilation. If a patient is intubated again (or re-
intubated), it is an indicator of increasing patient severity, and pos-
sibly longer length of stay.
10 In discussions with medical staff, we noted that doctors are more
likely to prescribe medical tests when discharge and diagnosis deci-
sions become difficult.

the patient’s length of stay. Recall that K is the dura-
tion of units of time over which high load brings
about a noticeable amount of fatigue. The value
of K that yields the best model fit for specifica-
tion (7) is chosen as the period of time over which
OVERWORKK is estimated. The coefficient �3 captures
overwork effects. A positive value of �3 suggests that
a sustained period of high load leads to a longer ser-
vice time, providing support for the hypothesis out-
lined in Equation (2).
The prior medical literature relies on self-reported

measures of fatigue. In this paper, we show that our
objective, census-based measure of overwork, also
increases the length of stay. This suggests that over-
work could be used as a proxy for a measure of
the level of fatigue, where self-reported values are
unavailable or biased.
We also examine whether staffing levels could affect

the length of stay of patients. Although we do not
directly observe the daily staffing levels in our data
set, we note that medical care providers, including
nurses, anesthesiologists, and residents typically work
regular weekly schedules. Consequently, any varia-
tions in the level of medial staff are “seasonal” on a
weekly basis. That is, the staffing level changes can be
controlled for by simply accounting for the day of the
week. In our preliminary analysis, we find that the
number of staff does not vary greatly during week-
days. However, staffing levels are slightly lower dur-
ing weekends. We also find that the average length of
stay is slightly less than two weeks. This means that
a patient admitted on a weekend would have stayed,
on average, two weekends in the hospital, whereas a
patient admitted early in the week would most likely
have spent only one weekend. Given that the week-
day staffing levels are higher than weekend staffing
levels, the patient who ends up spending two week-
ends experiences more days with fewer support staff.
Thus, by explicitly controlling for the day of week
of admission, we account for the weekly schedule-
related changes in the level of staffing that could drive
the observed length of stay effects. In the econometric
specification above, MON_WED = 1 if a patient was
admitted on either a Monday, Tuesday, or Wednesday,
and MON_WED= 0 otherwise. �4 estimates the effect
of a weekend or near-weekend admission on increas-
ing the length of stay.
We next consider the effect of load and overwork on

the quality of service. In health-care operations, medi-
cal outcome is commonly used as a measure of quality
of service. Compared to patient transport, outcomes
are much more important and also more accurately
quantifiable in the case of cardiothoracic surgery. Our
focus, with respect to quality, is to investigate if and to
what extent process variables such as workload and



Kc and Terwiesch: Impact of Workload on Service Time and Patient Safety
1494 Management Science 55(9), pp. 1486–1498, © 2009 INFORMS

overwork are significant covariates when predicting
mortality.
In this setting, a large body of medical literature has

statistically analyzed variables that influence the risk-
adjusted mortality score (Nashef et al. 2002, Kurki
2002, EuroSCORE 2007). Following a long line of
medical research in cardiac surgery, the EuroSCORE
model is one such statistical model that attributes a
mortality score to a set of patient level risk factors.
Specifically, the EuroSCORE model takes a number
of medical covariates, such as gender, age, medical
conditions, and procedure specific attributes, such as
the nature of the procedure, and links them to the
binary outcome of mortality using a logit regression.
That is, the EuroSCORE model is essentially a logistic
regression model with the dependent binary variable
as quality of care and the independent variables as the
preoperative and procedure-specific risk factors. The
online appendix lists the set of independent variables
used by the EuroSCORE model. In our analysis we
augment the EuroSCORE model to examine the effect
of additional covariates such as load and overwork
on the mortality rate.
We study two mechanisms in which process vari-

ables might affect mortality. First, workload and
overwork might impact the risk of mortality dur-
ing the hospitalization of the patient. For example,
Needleman et al. (2002, 2006) found that a higher
number of hours of care by registered nurses per
patient is associated with better care. Aiken et al.
(2002) report that higher patient to nurse ratios
are linked with higher patient mortality and fail-
ure to rescue among surgical patients. Following
this prior work, we argue that for intensive care
patients such as those in a cardiothoracic unit, a
decrease in the time that doctors and nurses have
available on a per-patient basis leads to an increase
in risk-adjusted mortality during the hospitalization.
Define the binary variable MORTALITY_IHi such that
MORTALITY_IHi = 1 if the ith patient died during the
hospitalization and MORTALITY_IHi = 0 otherwise.
To test hypotheses (3) and (4) using in-hospital

mortality as a measure of quality, we augment the
EuroSCORE model by including the variables LOAD
and OVERWORK as additional covariates. We con-
sider the effect of LOAD and OVERWORK on all post-
operative, in-hospital mortalities. This leads to the
following logistic regression model:

logit�Pr
MORTALITY_IHi��

=�0+Zi�1+�2LOADi+�3OVERWORKi�K� (8)

where �0 is the base-line rate of in-hospital mortal-
ities. Zi includes the 19 medical covariates that are

used in the EuroSCORE model to predict patient mor-
tality.11 A positive value of �2 in (8) would provide
support for the hypothesis outlined in (3), indicating
that patients entering cardiac surgery at a time when
the unit is highly utilized face a higher mortality risk.
Likewise, a positive value of �3 would provide sup-
port for the hypothesis outlined in (4), indicating that
patients entering cardiac surgery at a time when the
resources have been exposed to an extended period
of high workload (i.e., are overworked) face a higher
mortality risk.
Second, process variables might also impact mor-

tality after the hospitalization of the patient, i.e., the
mortality of patients who have already been dis-
charged. We use the postdischarge mortality as an
additional measure of quality. Define the binary vari-
able MORTALITY_PDi with MORTALITY_PDi = 1 if
the ith patient died within 30 days postdischarge and
MORTALITY_PDi = 0 otherwise. Just as we hypoth-
esized for the in-house mortalities, we aim to ana-
lyze if an increase in load or the cumulative effect of
overwork leads to an increase in probability of post-
discharge mortality. Unexpected complications might
be overlooked by a busy or overworked workforce.
In addition to validating (3) and (4), there exists

another effect of process variables on mortality that is
unique to the postdischarge mortality. A high work-
load might induce the hospital to discharge patients
early; this in turn might increase the odds of mortality.
However, to examine the effect of early discharge on
mortality rate, it is not enough to simply observe the
relationship between mortality and length of stay. This
is because a longer hospital stay could be associated
with increased case severity and a higher likelihood of
mortality. On the other hand, a shorter length of stay
due to an earlier discharge could lead to a lower qual-
ity of care, resulting in an increased likelihood of mor-
tality. Our objective is to identify this second effect. To
do so, we need to separate the confounding effect of
severity of illness on the length of stay.
We do this by first computing the predicted length

of stay for case i, ̂SVCTIMEi. Among cardiothoracic
surgery patients, medical risk factors such as patient
age, sex, various comorbidities, and procedure type
are considered to be significant predictors of length
of stay. We estimate this risk-based expected length
of stay ( ̂SVCTIMEi) using such medical risk factors.
We then compute the variable EARLYDISi as the dif-
ference between the actual length of stay (SVCTIMEi)
and the predicted length of stay ( ̂SVCTIMEi):

EARLYDISi = ̂SVCTIMEi −SVCTIMEi�

11 Service time is not included in this empirical specification because
for in-hospital mortalities, the patient discharge decisions and
hence length of stay are not explicit decision variables.
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The variable EARLYDISi then captures changes in
the length of stay caused by nonmedical risk factors.
In particular, we hypothesize that an increase in load
leads to an early discharge. To establish an increase in
load leads to an early discharge, we use the following
econometric specification:

EARLYDISi = �0 +Yi�1 +�2 log
LOADi�+ �i� (9)

where �i is the random error term. A positive value of
�2 suggests that an increase in load leads to an early
discharge. This in turn could impact mortality. By def-
inition, early discharges only influence postdischarge
mortality.
Next, to demonstrate that an increase in mortality

occurs due to an early discharge, we use EARLYDISi
in a new logistic regression:

logit �Pr
MORTALITY_PDi��

= �0 +Zi�1 +�2LOADi +�3OVERWORKi�K

+�4EARLYDISi� (10)

Positive values for �2 and �3 suggest that load and
overwork directly contribute to an increase in mor-
tality. Positive values for �2 and �4 suggest that load
indirectly contributes to mortality by inducing early
discharges.

5.2. Results
We estimate our models based on a sample of 2,740
patients corresponding to all admissions in our study
period from 2003 through 2006. Table 4 summa-
rizes the regression results with length of stay as a
dependent variable. We find that the length of stay
decreases when the load on the system increases. For
example, as indicated by the estimation using mod-
els (1) and (2), a 10% increase in load on average,
leads to a shorter length of stay by 20%. Given that

Table 4 Effect of Load, Overwork, and Early Week Admission on
Patient Length of Stay

Coefficient Model 1 Model 2 Model 3

Intercept 2�21 2�13 2�6
�0�09�∗∗∗ �0�09�∗∗∗ �0�07�∗∗∗

�2 −2�07 −2�08 −0�58
�0�26�∗∗∗ �0�26�∗∗∗ �0�11�∗∗∗

�3 2�27 2�28
�0�36�∗∗∗ �0�36�∗∗∗

�4 −0�09 −0�09
�0�03�∗∗∗ �0�03�∗∗∗

R2 0�24 0�24 0�22

F -statistic 38.3 (p < 0�01) 39.89 (p < 0�01) 37.6 (p < 0�01)

Note. Dummy variables for Yi (provided in the online appendix) are not
displayed.

∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% con-
fidence levels, respectively. Standard errors are shown in parentheses.

the average length of stay is around two weeks, this
amounts to a significant reduction in length of stay
of almost 2.5 days on average. However, the varia-
tion in LOAD in cardiothoracic surgery is relatively
low compared to transport service, as indicated by the
standard deviations in the descriptive statistics. Thus,
only a relatively small fraction of the sample experi-
ences load related changes of more than one day.
We also observe the effect of overwork in cardio-

thoracic surgery. In estimating (7), we find that K = 7
yields the best model fit.12 As Table 4 illustrates, a
0�01 unit increase in OVERWORKK leads to a 2%
(six hours) increase in the length of stay. Overall, we
find that overwork has an important bearing on the
performance of the cardiac unit and that high ser-
vice rates cannot be sustained for longer periods of
time, as postulated by the hypothesis in (2). In addi-
tion, we find that a weekday admission (�4 = 0�09) is
associated with a shorter length of stay. Specifically,
a patient who is admitted close to a weekend has
a longer length of stay by about 9%. One explana-
tion for this is that staff levels are lower during the
weekends. As a result, many services such as imag-
ing, diagnostic testing, and surgical services are cur-
tailed. This means that a patient who is admitted close
to a weekend is more likely to wait until the next
weekday before full services can be rendered. In par-
ticular, nonscheduled patients admitted through the
emergency department also have to wait before they
can be added to the surgical schedule. This has the
effect of increasing overall length of stay for patients
who are admitted closer to a weekend.13

Now, we turn to the impact of the process vari-
ables on mortality and first examine the in-hospital
mortalities (Table 5). We do find that overwork
has a statistically significant effect (�3 = 3�53, p-
value = 0�01), supporting the hypothesis outlined in
Equation (4) that patients admitted to an overworked
unit are at increased risk of mortality. In particular,
a 10% increase in OVERWORK is associated with a
2�2% increase in mortality rate.14 This result is con-
sistent with findings in the medical literature link-
ing fatigue to a decrease in quality of care. How-
ever, our measure of fatigue (or overwork) is obtained
from observed workload, whereas the previous stud-
ies relied on self-reported measures from service
workers. The effect of load is not statistically signifi-
cant at the 10% level.

12 Our estimations were performed with varying values for K. The
final value of K that was chosen yields the best maximum likeli-
hood value.
13 We thank the department editor for pointing out how staffing
difference between weekdays and weekends could impact patient
length of stay.
14 The increase in probability was estimated using �p/�OVERWORK
= �3p
1− p� with the average mortality rate of p= 0�068.
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Table 5 In-Hospital Mortality Results

95% wald
confidence

Coefficient Estimate Odds ratio limit

Intercept −1�3 (0.83)∗

�2 −4�09 (3.52) 0�017 0�002�0�127
�3 3�53 (1.4)∗∗∗ 34�37 1�89�622
Likelihood ratio (�2) 234.6 (p < 0�0001)

Note. Dummy variables for Zi (provided in the online appendix) are not
displayed.

∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% con-
fidence levels, respectively. Standard errors are shown in parentheses.

Next, we look at the results for the postdischarge
mortality (Table 6). The coefficients �2 and �3 are
not statistically significant at the 10% level, suggest-
ing that overwork and load do not directly impact
the postdischarge patient mortality. Thus, there is no
support for the hypotheses indicated by (3) and (4)
when tested on the postdischarge patient mortality.
However, the coefficient for EARLYDIS (�2, Table 7) is
estimated to be 7.1 (p-value= 0�01), providing strong
evidence that an increase in load leads to an early dis-
charge. In particular, a 10% increase in load leads to
an early discharge by 0.7 days on average. When we
examine the effect of early discharges on the postdis-
charge mortality rate, we find that the coefficient �4
has an odds ratio that is close to 1 (coefficient= 0�13,
odds ratio= 1�14), suggesting a small increase in odds
of mortality associated with an early discharge. How-
ever, the probability of a 30-day postdischarge mortal-
ity of any randomly selected patient is less than 1%.
Consequently, the corresponding increase in odds by
a factor of 1.14 due to an early discharge by a day,
is small (less than 1 in 1,000 cases is associated with
an early discharge induced mortality). Furthermore,
early discharges by more than a day would require
the load to increase by more than 13%. Such varia-
tions of the load above the mean of 0.78 are infre-
quent, as indicated by the low standard deviation.

Table 6 Postdischarge Mortality Results

95% wald
Odds confidence

Coefficient Estimate ratio limit

Intercept −3�31 (2.62)
�2 −4�02 (3.38) 0�018 �0�001�13�606�
�3 9�2 (5.44) >999 �0�111�9�19�
�4 0�131 (0.04)∗∗∗ 1�14 �1�043�1�246�
Likelihood ratio (�2) 48�1 (p < 0�01)

Note. Dummy variables for Zi (provided in the online appendix) are not
displayed.

∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% con-
fidence levels, respectively. Standard errors are shown in parentheses.

Table 7 Early Discharges Resulting from Increased Load

Coefficient Estimate

Intercept 1�97 (0.67)
�2 7�1 (1.4)∗∗∗

R2 0�06
F -statistic 5�57 (p < 0�01)

∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%,
and 10% confidence levels, respectively. Standard errors are
shown in parentheses.

Thus, this effect is statistically significant, as hypoth-
esized, but small in absolute magnitude.
In summary, we find two effects related to quality.

First, overwork leads to an increase in the in-hospital
mortality rate. Second, increased levels of load lead
to early discharges, which in turn is associated with
a small increase in the postdischarge mortality rate.

6. Discussions and Future Research
Prior research has assumed that the service rate in a
service operations facility is independent of the level
of load on the system. We present a model of ser-
vice worker productivity that includes the effect of
load and (over time) the subsequent overwork on ser-
vice rates. We also consider the quality implications
of variable service rates. For the two vastly different
services in our study, we find that resources in hospi-
tals are sensitive to their levels of load and that ser-
vice workers can adapt to system needs by expending
more effort to increase the service rate as required.
Various researchers (e.g., Dranove 2002) have

reported that hospitals, like most financially oriented
entities, have an incentive to increase profits when
possible. For instance, Friedman and Pauly (1983) and
Anderson and Steinberg (1984) have shown that hos-
pitals exhibit a profit-maximizing response to changes
in reimbursement terms. In the United States, the
diagnosis related group (DRG) for the diagnosis of
the patient at the time of discharge determines the
amount that the hospital is paid (Federal Trade Com-
mission and Department of Justice Report 2004).15

Hospitals receive this payment regardless of the real-
ized cost of care; thus, each additional increase in
length of stay beyond the standard expected stay gen-
erates zero or minimum marginal revenues.16 Under
DRG-based payment, hospitals have an incentive
to increase admissions (Friedman and Pauly 1983).

15 Each DRG has a payment weight assigned to it, which reflects
the average cost of treating patients in that DRG.
16 Certain hospitals receive an adjusted payment in excess of the
standard DRG amount. Actual outlier adjustments are specific to
a DRG and are typically made to teaching hospitals and hospitals
that treat a disproportionate number of low income patients.
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At high levels of load, a hospital’s ability to admit
new revenue generating patients is reduced. In this
paper, we do not empirically examine the underlying
incentive schemes. However, it is conceivable that a
hospital facing a high load may have a financial incen-
tive to reduce the duration of stay for patients who
can be safely discharged earlier, to make room for
new admissions. As we demonstrate from our anal-
ysis, this could have negative consequences for the
patient’s quality of care. Any potentially conflicting
economic and service quality incentives need to be
further examined empirically. With the advent of new
policy changes in reimbursements to hospitals such as
pay for performance (where a hospital’s reimburse-
ment is tied directly to its outcomes), there is greater
need to empirically examine the role of hospital oper-
ations on its financial health.
We also show that increases in productivity cannot

be sustained over a long period of time. Traditional
wisdom has been that services should operate at close
to full utilization to take advantage of capacity costs.
However, sustained levels of high utilization results
in overwork and the resultant decrease in productiv-
ity may offset any cost savings from operating at high
utilization. In many service operations, the impact of
high system load on the quality of service is a signif-
icant consideration for service managers. In our anal-
ysis of cardiothoracic surgery, we find that overwork
increases the likelihood of mortality—a finding that
is consistent with prior medical literature. We also
identify a small decline in service quality which is
correlated with an accelerated service rate (or early
discharge).
We found the area of hospital operations to be a

fruitful area to create a framework of service worker
productivity. Future research needs to investigate if
and how our findings apply to other services. For
example, the impact of load (and queue length) on
quality of inspections is of paramount importance
in areas such as airport baggage screening (Jacobson
et al. 2003) and in port security (Bakshi et al. 2008).
One could also expect the effect of load and over-
work to impact quality of service in a variety of appli-
cations including call centers and financial services
(e.g., loan underwriting). Based on our interactions
with the medical and business professionals at our
research site, we also encountered a great interest to
explore questions beyond the research presented in
this paper. Future research could also look at account-
ing for other factors, beyond those used in the study
that could affect the case severity. An extreme appli-
cation in which the interaction between workload,
fatigue, and early discharge is especially of interest to
the medical community is the intensive care unit, and
we hope that future research can extend our analysis
to this important area of health-care operations.

7. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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