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The Copy-Exactly Ramp-Up Strategy: Trading-Off
Learning With Process Change

Christian Terwiesch and Yi Xu

Abstract—Production ramp-up is the period of time during
which a manufacturing process is scaled up from a small labo-
ratory-like environment to high-volume production. During this
scale-up, the firm needs to overcome the numerous discrepancies
between how the process is specified to operate as written in the
process recipe and how it actually is operated at large volume.
The reduction of these discrepancies, a process that we will
refer to as learning, will lead to improved production yields and
higher output. In addition to its learning effort, however, the firm
also attempts to change the process recipe itself, which can be
in direct conflict with the learning objective. We formalize this
intertemporal tradeoff between learning and process change in
form of a dynamic optimization problem. Our model explains the
idea of a “copy-exactly” ramp-up, which freezes the process for
some time period, i.e., does not allow for any change in the process.
Mathematically, this corresponds to a process improvement policy
which delays process changes, thereby exhibiting a nonmonotone
trajectory, which we show to be optimal if the initial knowledge
level is low, the lifecycle short and demand growth is steep, and
learning is difficult.

Index Terms—Copy-exactly (CE), learning, process improve-
ment, product launch, ramp-up.

I. INTRODUCTION

MANY high-tech industries are struggling in environ-
ments of shrinking product lifecycles and increasingly

complex production technologies. The window for selling
many products has shrunk to less than a year in industries
such as semiconductors, disk-drives, and telecommunications.
These market dynamics pressure production facilities to begin
full-scale production at a point when the underlying process
technology is still ill understood. As a result, firms suffer
from substantial yield losses, which can dramatically affect the
economics of the product, production facility, and business.

We define production ramp-up as the period of time fol-
lowing the introduction of a new process into a production
facility with the objective to scale up production output from
the small batches used in laboratory environments to the large
volumes requested by the market. A recent example of the
importance of yield losses during ramp-up can be found in
Advanced Micro Devices, Inc.’s (AMD) efforts to compete
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with INTEL in the microprocessor market. AMD had several
generations of products that were slow to ramp, leading to
limited market acceptance and financial difficulties for AMD.
More recently, INTEL experienced problems ramping up the
yield of its 0.18- m version of the Pentium. Industry observers
report that it was this effective ramp-up of AMD’s K7 processor
which allowed AMD to gain market share in the high end
segment of the PC market [33].

Given the “premature” transition of the product from the
R&D labs into commercial production, a company finds itself
in a difficult situation. On the one hand, it wants to begin
accumulating knowledge with the newly introduced process, in
an attempt to overcome the numerous discrepancies between
how the process should be operated—as outlined in the process
recipe (process specifications)—and how the process is actu-
ally operated in the production facility. The reduction of these
discrepancies, a process that Zangwill and Kantor [32] refer to
as waste reduction or more generally as learning, will lead to
improvements in yields.

On the other hand, the firm wants to further refine the cur-
rent process recipe, a phenomena that we will refer to as process
change or recipe modification. Such refinements might be based
on technologies created outside the firm, leading to potential ac-
quisitions of new production equipment, upgrades of software,
and increases in automation, or it might come from internal
efforts including research and development and process engi-
neering. Following such a recipe modification, the firm moves
to a new performance trajectory, with a more desirable fron-
tier, which we model as lower unit costs. While beneficial in
the long-run, a recipe modification during ramp-up provides a
disruption in the firm’s learning process: routines that were just
developed in an attempt to fully implement the old recipe be-
come outdated and new or revised routines are required.

In this paper, we model the tension between learning and
process change, leading to the following novel contributions.
First, we extend the literature on normative learning models
and apply them to the problem of production ramp-up, which
has been identified as an important blank space on the map of
product development research [17]. We describe the ramp-up
strategy of copy exactly, which is a real-world phenomena
of substantial importance, and relate it to models of learning
and process change. Second, we explicitly model the tension
between process change and learning. Contrary to most of the
earlier work (a notable exception [7]), we show that it can be
optimal to delay process change, even if change would be for
free. Third, our paper differs from Carillo and Gaimon’s work
as we explicitly capture the details of how change leads to

0018-9391/04$20.00 © 2004 IEEE



TERWIESCH AND XU: COPY-EXACTLY RAMP-UP STRATEGY 71

disruption. In the Carillo and Gaimon work, change causes a
short term capacity reduction, but does not impact knowledge
itself [7]. Our formulation, in contrast, takes a more detailed and
micro-level perspective as we model the effect of the control
variable “process change” on the state variable “knowledge”
directly in the optimization problem.

Our theoretical contributions have direct managerial implica-
tions. We explain the concept of a “copy-exactly” (CE) ramp-up.
This ramp-up strategy, which is extremely conservative with
respect to process change, was introduced by INTEL for their
ramp of new fabs around 1991, and has since then been aug-
mented to the company’s fundamental ramp-strategy. Remark-
ably, while almost every member of the semiconductor industry
is aware of CE, most competitors do not “buy into it,” and
favor a much more aggressive process change during the ramp.
Moreover, several suppliers and industry observers argue that
the recent changes in the semiconductor landscape—including
300-mm wafers, shorter product lifecycles and further shrinking
line-widths—make CE an outdated ramp-strategy. However,
what is the influence of these variables on the choice of CE, or
a process change policy in general? How does the complexity
of the process or the length of the product lifecycle influence
these decisions? Our analysis reveals several structural results
providing answers to these questions, including that CE is
beneficial if the initial understanding of the process is low, the
lifecycle is short and grows quickly, the process is difficult
to improve and sensitive to even small modifications.

II. THEORETICAL FRAMEWORK AND INDUSTRIAL EXAMPLES

We focus on production ramp-ups of high-tech products, such
as semiconductors, disk drives, and complex pharmaceutical
compounds. Given the short lifecycles and rapid price erosion in
these industries, management is often forced to bring products
to market before the manufacturing process is fully understood.
Given the joint pressure from both market and technology, and
the resulting rate of change, management cannot afford to op-
timize and fine-tune all product and process related decisions
prior to launch. Instead, it has been reported that in such “high
velocity” environments firms have to rely on an experiential
problem-solving strategy [10]. From an operations management
perspective, such an approach leads to low stages of knowledge
at the outset of production, which can cause substantial yield
losses [29].

Yields are an important performance measure during pro-
duction ramp-up because they have a major effect on process
economics [23]. Low yields reflect gaps between how the
process should be operated, as specified in the process recipe,
and how the process is actually operated in the production
facility. Pisano [25] reports how pharmaceutical companies
experience yield losses when they transfer a complex product
from an R&D lab to commercial production. The process
recipe is created in an environment of highly trained workers,
small production batches, and extremely sophisticated pro-
duction equipment. In contrast, facilities used for commercial
production are operated by regular work-force, they produce

large quantities leading to so called scale-up problems1 and
use equipment frequently incapable of achieving the tight
tolerances defined by the process recipe. Thus, the phase of
production ramp-up is primarily one of yield improvement
during which the firm attempts to accurately implement the
current process recipe at a large scale. We refer to these efforts
as learning or waste reduction and discuss them in the following
subsection.

A. Implementing the Current Process Recipe: Learning and
Waste Reduction

Learning describes a firm’s accumulation of knowledge and
its movement along a certain trajectory, called the learning
curve. Learning curves have received a great deal of attention
in the manufacturing and—more recently—organizational
literature [2]. The traditional learning curve model postulates
that variable production costs fall as the logarithm of cumula-
tive production [31], [19]. More recently, the same argument
has been applied to other performance measures, including
production yields [14].

In addition to the traditional argument that learning is driven
by cumulative output, numerous factors that can explain why
and how fast a firm moves down a learning curve have been
identified. For example, Lapré et al. [18] relate learning to the
cumulative number of quality improvement projects under taken
at a certain point in time. A similar position has been taken
by Hatch [15], who relates human resource practices in semi-
conductor manufacturing to performance improvement. The im-
portance of training in learning curves has been discussed by
Anderson [1] and modeled formally by Carrillo and Gaimon
[7]. Others have argued that learning is primarily driven by the
proportion of production capacity that can be managed toward
generating knowledge, as opposed to output. This follows the
notion of a learning laboratory [5] and has been observed em-
pirically by Pisano [25] during the ramp-up of biotechnology
processes. Terwiesch and Bohn [29] as well as Chand et al. [8]
analyze the resulting tradeoff between exploiting an organiza-
tions current capacity toward generating revenues, versus using
capacity to explore opportunities for process improvement.2

Despite these differences in perspective of what actually
drives learning at the micro level, three elements are common
across the literature. First, learning is a process of accu-
mulation, specifically one of building an increasing base of
knowledge and organizational routines. This view underlies the
econometric estimation of learning rates, which use cumulative
output, cumulative investment, or cumulative learning activity,

1Scale-up problems in chemical reactions can be extremely complex and non-
linear. For example, when producing 10 kg of a substance opposed to 10 g, it is
not sufficient to multiply all specificaions with a factor 1000.

2Many others have looked at learning and thereby the rate of performance im-
provement at a more aggregate level. For example, Mody [24] provides a model,
which explicitly examines engineering effort as a driver of learning. Dorroh [9]
have a related model of make to order production, with a production function
that takes knowledge and other resources as inputs. Knowledge is produced by
an explicit investment in learning, independent of the ongoing production. This
approach has also been taken in the operations management literature, where
models of process improvement have been presented by Fine [11] and Fine and
Porteus [12].
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Fig. 1. Elements of learning curve.

as an independent variable as well as the existing mathematical
models. Second, while a firm would always prefer a large
knowledge base over a small knowledge base, learning does
not come for free. Costs of learning obviously depend on the
sources of learning, and can include short-term disruptions
through training [7], capacity investments [8], or mere financial
investments [12]. Third, there is an overall agreement that
the returns to investment in learning are diminishing. This
is consistent with Zangwill and Kantor’s model of waste
reduction, which assumes that each halving of waste requires
a roughly constant amount of effort [31]. In our models, zero
waste equates to 100% yield. Fig. 1 summarizes these three
common points.

B. Recipe Modifications: Improvement Potential and
Disruption of Learning

Achieving a perfect implementation of the process recipe,
which basically corresponds to eliminating all waste from the
process, is not the only source of process improvement. After
the process recipe has been defined and transferred into com-
mercial production, new improvement opportunities typically
arise. This is especially likely if the product has to be rushed
to market, thereby requiring process engineering to “cut some
corners” in the specification of the process recipe.3

Although the firm might benefit from modifications in the
process recipe after product transfer in the long-run, process
change can be the source of serious short-term disruptions [7]. In
complex production processes, even slight recipe modifications
can make millions of dollars in waste reduction effort obsolete
and require the development of new knowledge and routines.
New technologies also directly affect the productivity of the
firm’s workforce, as argued by Gaimon [13]. In that sense,
a modification of the current process recipe actually reduces
(relevant) knowledge. This does not mean that the organization
actually forgets what it has learned before, but rather that what

3Our focus is purely on changes in the process recipe opposed to changes in
the actual product. See Bhattacharya [4] for a model describing the situations
under which it is optimal to freeze the product specifications early versus late.

it has learned in the past has partially lost its relevance and
that there are additional things to be learned.4

Many models of learning have ignored the difference be-
tween learning and process change. The amount of accumulated
knowledge by itself is insufficient to accurately describe the
production process during ramp-up, as it only captures how
closely the firm is able to execute the current process recipe,
as opposed to including information about the quality of the
process recipe itself. To capture this additional dimension, a
second state variable is needed.

To help illustrate the need for this distinction, consider a
person who wants to master the art of playing the piano. In this
case, learning corresponds to the person practicing. Practicing
is typically based on a specific piece of music the person plays.
Initially, this would be a very simple piece. While practice
might make the person perfect in playing this specific piece, the
first time the person switches to a more advanced piece would
not sound all too attractive. Following the switch to the more
advanced piece, the person again improves based on practice.
Overall, the process of mastering the piano is a subtle interplay
of practicing a piece versus advancing to more sophisticated
levels. To capture this interplay, we need to keep track of what
piece the person is currently playing (Bach versus children’s
music) and how much the person practiced this piece and other
pieces before.

The need for a second state variable also becomes apparent
when looking at empirical studies who have reported cases
where an organization invests in learning, but does not change
its process recipe. This situation is prevalent during the ramp-up
of a new production process [14], [22]. Based on this argument,
we extend Fig. 1 by introducing a second state variable (Fig. 2).
The firm, thus, faces a tradeoff in deciding about its investment
in learning and about the amount of process change.

C. Industrial Examples

C. McDonald, director of the Advanced Technology Devel-
opment Facility at INTEL, describes the company’s approach

4This is consistent with Lapré [18], who show in a steel chord manufacturing
plant that certain projects, namely those that were started out of the corporate
R&D, actually decreased process performance and caused significant disruption
in the production process.
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Fig. 2. Theoretical framework of the model.

to production ramp-up in [22]. He observes that engineers have
a desire for modifying the process recipe, especially during
production ramp-up. The emphasis under the CE approach, in
contrast, is to first focus on the implementation of the existing
process recipe. Once the new process achieves high yields
in high volume, production line engineers can take over and
conduct modifications. This is an example where, during the
ramp-up, a firm invests in learning (yield improvement) but
explicitly avoids modifications. Modifications are risky, as they
“make the fab behave differently, with different sensitivities,
process differences and interactions pertaining specifically to
wafer fabrication equipment, which may lead to a detrimental
impact on yield (INTEL document).”

In addition to recipe modifications in the strict sense (e.g., a
change in temperature at a diffusion furnace), process change
can also relate to equipment acquisition. INTEL insists on
having the exact same equipment for the high volume produc-
tion as was used in the process development. While this reduces
the company’s flexibility in benefiting from recent supplier de-
velopments, it does facilitate the transfer from the development
fab to other production facilities. This is illustrated in Fig. 3. In
the left part of the figure, the firm acquires the latest equipment
for the beginning of production in Factory 1. However, as this
provides a substantial process change, yields drop following
the transfer to volume production, leading to direct economic
losses and the need for additional learning investments.

Under CE Fig. 3 (right), INTEL uses the same equipment
in volume production as it did in the development fab (i.e.,
no process change), which allows the firm to continue along
the yield curve of the development fab. However, with CE,
INTEL is forced to acquire “old technology” for its volume
production facilities. B. Wood, director of marketing at an
equipment vendor, remarks:“They [INTEL] use some of the
oldest equipment in the business, some of the most outdated

equipment, because of their CE requirements ” [34]. The
“idealized” time series in the upper part of Fig. 3 are strongly
supported by empirical data. The lower part of Fig. 3 contrasts
the ramp of the 1.0- m technology, the last ramp at INTEL not
following CE, with the one of the 0.5- m technology using
the CE approach and reveals the same pattern as in the upper
part. A similar observation is reported by Thomke [30].

III. MODEL FORMULATION

Based on the theoretical framework presented in Fig. 2, we
now present a profit maximization model that captures the
interplay between recipe modifications (process change) and
learning during production ramp-up. Following the earlier
research by Spence [28], Fine [11], Chand et al. [8], Li and
Rajagopalan [20], and Carrillo and Gaimon [7], we use a de-
terministic model with continuous state and decision variables.
This approach provides an aggregate view of the detailed
dynamics of learning and does not consider the micro-level
uncertainties engineers encounter in their daily work.5 A
summary of the model notation and the underlying assumptions
are provided by Tables I and II, respectively.

Let be the process change rate at time ,
where is the maximum amount of process change at any time.
Then, for any given time , the cumulative amount of process
change can be expressed as

(1)

The cumulative change in process recipe can be viewed
as a state variable that represents the production facility’s per-
formance potential with a given process recipe. Differentiating

5See [12] for a stochastic model of the dynamics of process improvement.
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Fig. 3. Basic idea behind INTEL’s CE ramp-strategy. Theory (upper part) and empirical evidence (lower part).

TABLE I
SUMMARY OF NOTATION

both sides of (1) with respect to , we obtain the following dif-
ferential equation that governs the motion of state variable :

(2)

Let denote the knowledge level of the process at time
for the process recipe defined by . Following Fig. 2, knowl-
edge is increasing in the cumulative investment the firm made in

learning and decreasing with every modification in the process
recipe. Let be the learning effort the firm invests
at time , where is the maximum amount of effort that
can be invested in learning at a point in time. Thus, the knowl-
edge level at time , , can be expressed as

(3)
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TABLE II
SUMMARY OF ASSUMPTIONS

where and are the relative weights on the impact
of learning and process change, respectively. We can think of
being a measure of the speed of learning, be it in the form of
the engineering talent, the quality of measurement equipment
guiding the learning, or simply the “learnability” of the process
itself. can be labeled as the disruption parameter, as it indi-
cates to what extend the firm suffers a loss in knowledge for a
unit of process change. It, thereby, reflects the complexity of the
production process and the degree of interdependence between
process steps.

Differentiating both sides of (3) with respect to , we obtain
the following differential equation governing the motion of the
state variable :

(4)

Following Fig. 2, our model is built around two state vari-
ables, the performance potential of the process recipe and
knowledge level . Their motion is governed by the differen-
tial (2) and (4), respectively.

At time 0, the firm starts to ramp-up the new process to pro-
duce a new product with a lifecycle duration of . In presence
of an imperfect implementation of the process recipe, the firm
will not be able to fully benefit from its nominal capacity level.
Instead, it will suffer from yield losses, meaning that some of the
obtained output will not be of sufficient quality to be sold to the
market.6 We assume process yield at time , , to be an in-
creasing and concave function of the knowledge level . That
implies and . At the abstract level,
yield losses can be interpreted as waste. Consequently, assump-
tion A1 is consistent with the analytical work by Zangwill and
Kantor [31] and the empirical work by Lapre et al. [18]. Note
that . Furthermore, we assume that and

, i.e., yields approach 100% with knowledge reaching
perfection.

There are three kinds of costs in the system, unit man-
ufacturing cost, cost of learning, and cost related to recipe
modifications. The unit manufacturing cost at time , ,

6As we do not explicitly consider rework in our model, the reader should think
of y(t) being the composite yield, which includes the units passing inspection
in their first attempt and units passing inspection after rework (see, e.g., [6] for
various definitions of production yields).

is assumed to be a decreasing and convex function of the
process recipe at time , which is defined in (1). That
implies and We focus on mod-
ifications related to the process; a similar analysis holds for
modifications related to the product, which are associated with
higher prices [26]. At first sight, there seems to be an incon-
sistency between our model formulation and the traditional
learning curve literature, which has postulated that the cost
of production decreases with learning. To clarify what seems
like an inconsistency, the following observations are helpful.
The cost per good unit can be computed as .
From this expression, we can observe that the cost per good
unit is decreasing with learning. At the abstract level, one can
think of the cost of a good unit as being broken up into a
knowledge depending part (which we call yield) and a process
change dependent part.7 Thus, parts of the cost are impacted
by process change and other parts are impacted by learning.
Both, change and learning, decrease the costs of a good unit,
thus A1 and A2 are in line with existing research.

Let be the firm’s production rate at time . Thus,
units of good products will be sold to the

market. The firm faces a downward sloping demand curve
represented by Hence, the realized final rev-
enue at time will be equal to .
For notational convenience, we denote the revenue as an
increasing function of and that is defined
as .
Furthermore, we assume the revenue function to be con-
cave and supermodular in and . That implies

, , ,
, and . The concavity and the

supermodular assumption (assumption A3) has been made by
prior research, including Spence [28], Fine [11], Chand et al.
[8], Li and Rajagopalan [20], and Carrillo and Gaimon [7].
The computational assumptions A4-A6 are also consistent with
these earlier studies.

Also, we define and , where
. The gap between and can be viewed as the process

improvement potential resulting from process change. The

7This view is consistent with the economist’s idea of a Cobb–Douglas
production function, which also breaks up the cost of production into
multiplicative elements.
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learning cost is assumed to be an increasing and
convex function of the units of learning efforts. Therefore,

and . Learning cost reflect the
investment associated with the reduction of waste, i.e., efforts
that focus on perfecting the current process recipe. Finally, the
costs of process change are also assumed to be an increasing
and convex function, i.e., , where and

, including expenditures related to equipment
upgrades or engineering hours for process development.

The firm’s decisions are the production rate , the amount
of process change and learning effort that are chosen
over time to maximize the total profit on the planning horizon
[0, ]. The firm’s ramp-up problem can be formulated as the
following continuous time optimal control model.8 See (5)–(9)
at the bottom of the page.

Our analysis does not include a discount factor, as most of
the analysis becomes analytically extremely complex, without
leading to any additional insights (see [7] for a similar observa-
tion). We found numerically that all our results continue to hold
if a discount factor is introduced (see Section VI).

Throughout the paper, we use dots to denote derivatives with
respect to time and primes to denote derivatives with respect
to decision variables. Constraints (5) and (6) are the state mo-
tion governing equations for these two state variables, respec-
tively. Constraints (7) and (8) ensure the nonnegativity of the
state variables. Constraint (9) specifies the starting points of the
state variables.

Our model is closely related to the work by Carrillo and
Gaimon [7], who also discuss the disruptive effect of process
change. In their model, the disruptive effect of process change
takes the form of a short term capacity loss (similar to Ter-
wiesch and Bohn [29]) but is assumed to increase knowledge.
In contrast, in our model, process change does not generate
knowledge automatically (e.g., upgrading to a faster diffusion
furnace does not create direct knowledge about its appropriate
usage), but merely shifts the frontier of the underlying tech-
nology. In this setting, the disruptive effect of process change
is one of lower process yields (e.g., the upgraded diffusion
furnace requires different temperature settings) and additional
learning effort is required to restore yields to the previous level.

8In this model, we do not consider any salvage values of the knowledge or
process capability occurring at the end of the planning horizon. The impact of
salvage value is well understood and has been studied by, e.g., Dorroh [9] and
Carillo and Gaimon [7].

IV. ANALYTICAL RESULTS

Our first result, Theorem 1, characterizes the optimal learning
policy and the optimal process change policy. Both policies are
so-called threshold policies, which are common in models of
dynamic control.

Theorem 1 (Optimal Learning and Process Change Poli-
cies): The optimal learning and process change policies can
be characterized as the following:

1) for any given time , there exist such that
if if
, and if ;

2) at any time , for any given , there exist
such that if

if
, and if .

The optimal learning policy only depends on one state vari-
able, the knowledge level . This is because the learning ef-
fort only affects the knowledge level of the process [see (5)].
In contrast to the optimal learning policy, the optimal process
change policy depends on both state variables, the knowledge
level and the cumulative process change. This difference results
from the fact that the process change rate affects both state vari-
ables in the system [see (5) and (6)]. Therefore, when making
decisions related to process change, one needs to consider the
current knowledge level (How well is the process understood?)
as well as the cumulative amount of process change (How ad-
vanced is the current process?). The optimal amount of process
change balances the revenue and cost effects caused by the state
variables.

According to the optimal process change policy, more aggres-
sive process change is more desirable when the knowledge level
of the current process is above a certain level. A higher knowl-
edge level builds a good foundation for more aggressive process
change in the future, because the negative effect of decreasing
knowledge caused by process change at a higher knowledge po-
sition is less than the one at lower knowledge position. This is
summarized by Corollary 1.

Corollary 1 [Impact of Initial Knowledge Level ]:

a) a firm with lower initial knowledge level will invest more
in learning and will pursue less process change;

b) a firm with lower initial knowledge level will start process
change later.

(5)

(6)

(7)

(8)

(9)
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The policy outlined in Corollary 1 relates to Jaikumar and
Bohn’s framework of the “stages of knowledge:” the firm is
only allowed to modify the current process recipe if it is able
to fully implement the current one. It is required “to be able to
walk before attempting to run.”

Our second Corollary postulates that the knowledge threshold
increases with cumulative process change. That simply implies
that the more advanced the process, the less change should be
done to it, which is a natural consequence of the convexity as-
sumption of the unit manufacturing cost function .

Corollary 2 (Monotonicity of the Optimal Process Change
Policy): If , then
and .

The result of Corollary 2 differs from the results outlined in
the existing literature. In most of the prior work, the optimal
policies assume that the control variables (learning) have a pos-
itive effect on the one state variable (Fig. 1 versus Fig. 2). Thus,
the only reason for not having an infinite rate of knowledge ac-
cumulation lies in the costs associated with the control variables.
Our model introduces a second tradeoff in addition to the one re-
lated to cost. Even if changes in the process recipe were free, they
might not be desirable as they reduce knowledge in the short
term.

Theorem 2 (Optimal Strategies):

1) optimal learning investment decreases over time;
2) if , the

optimal process change rate increases (decreases)
over time;

3) when , the optimal production rate, in-
creases over time; When , the optimal pro-
duction rate, increases (decreases) over time, if

.

The decreasing amount of investment described in Theorem
2.1 is consistent with results from existing models. Theorem 2.2
describes the specific pattern of the optimal process change rate
will depend on the relative positions of the state variables,
and . This structural result is consistent with the findings of
Carillo and Gaimon [7]. Especially if the underlying production
process is extremely complex, it is likely that the initial value
of knowledge is below the corresponding threshold value.
In such a case, no process change is allowed and all effort is di-
rected toward mastering the current recipe (i.e., increasing
and thereby production yields). INTEL’s CE philosophy is one
illustrative example of this. After the current process recipe is
implemented with adequate levels of yields, process change can
become beneficial.

The optimal rate of production postulated by Theorem 2.3
can be increasing or decreasing over time. The output rate in-
creases monotonically only in the special case when no process
change is introduced (and correspondingly the knowledge level
is strictly increasing, ). If we consider the disruptive ef-
fect of process change leading to phases during the production
ramp-up when the knowledge level is decreasing ( ), the
optimal production path can be either increasing or decreasing.
We see that small reductions in knowledge can still increase
the production volume, because the revenue generated by in-

creased production is still greater than the loss associated with
lower yield (the right-hand side of the equation can still be pos-
itive). However, for larger reductions in knowledge, production
volume is scaled down as a large production volume would am-
plify the yield losses. Only after yields have been increased, is
it economical to also increase production rates.

Theorem 3 (Sensitivity Analysis):

1) The higher the learning parameter , the higher is the
optimal learning investment rate . However, the op-
timal process change rate is not monotone in .

2) The higher the disruption parameter , the higher is the
optimal learning investment rate and the lower is
the optimal process change rate .

As expected, if the costs of learning are low ( is small), the
firm should invest relatively more resources into learning. The
relationship between the learning parameter and the optimal
process change rate is more complicated though. There are two
effects between and . On the one hand, a higher , i.e.,
a higher return from a unit of learning effort, enables the firm
to pursue a more aggressive change strategy, as the disruption
caused by process change can be more easily recovered through
future learning investments. On the other hand, process change
by itself can be costly and might not be recovered over the finite
planning horizon.

An increase in the disruption parameter increases the short
term knowledge loss associated with process change. Even a
small amount of process change might be the source of a major
reduction in production yields. Thus, it is optimal to implement
process change more conservatively. At the same time, the firm
should increase its investment in learning to compensate for the
knowledge losses caused by future process change.

V. LEARNING BEFORE DOING

After analyzing the general model, we now turn to a slight
variation of our ramp-up problem that we label learning before
doing. The case of learning before doing occurs if the learning
process does not primarily occur during commercial production,
but prior to it, for example in a dedicated pilot plant. Instead of
producing salable output, the major focus of such a pilot pro-
duction facility is to develop a process capability that can then
be replicated in the commercial facilities at launch time [25].

We define process capability as the linearly weighted combi-
nation of yield and unit manufacturing cost, where the weights
are and , respectively. Thus, the capability at time equals

. Basically, the process capability is a mea-
sure of process profitability at launch time, since mea-
sures the firm’s capability of implementing the current process
recipe and measures the quality of the recipe itself.

The costs for learning investment and process change and the
dynamics between the state variables and the control variables
are as defined in the previous section. The only difference lies in
the objective function, which is concerned only with the process
capability at time , as opposed to its detailed trajectory.

In the example of a person learning to play the piano
discussed previously, this corresponds to the case where the
person is only concerned about her skills at one event, e.g., one
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important concert, as opposed to a good performance at every
practice session. The learning before doing problem can be
defined as follows:

(10)

s.t. (5)–(9).
We can characterize the optimal learning and process change

policies in the following theorem.
Theorem 4 (Optimal R&D Learning and Process Change

Policies): For the R&D process defined earlier, suppose
x t for all , both the optimal learning rate
and process change rate remain constant over the whole time
horizon, i.e.,

where and solve the (34) and (35), respectively.
Theorem 4 suggests a fundamentally different policy for man-

aging the pilot process as opposed to the commercial process
(see Theorem 1). During commercial production, management
needs to permanently “have an eye on” profits. In a pilot plant
however, it can focus purely on knowledge creation. What is
the most economical way of increasing performance? Since of
the convexity of the cost functions, knowledge is best created
by “walking a steady pace.” The decisions related to learning
and change collapse to a static marginal analysis on the tradeoff
between gains and costs, uncorrupted by commercial pressures
during the learning process.

During an R&D process, managers often face tradeoff be-
tween process maturity and time-to-market. Reflecting this
consideration in our model, we not only need to determine
the optimal learning and process change rates, but also need
to choose the optimal R&D length . Assume the penalty
cost of delayed market entry is , which is an increasing
and convex function of . We can now extend the objec-
tive function (10) to capture the tradeoff between rushing the
product to market (low , leads to high costs per good unit)
and delaying the launch (high , leads to high opportunity
cost).

From Theorem 4, we know that for any given , the optimal
learning and process change rates stay constant ( and ) over
the time. Thus, at the end of the R&D process, we have

and . Therefore, for any given ,
the corresponding objective function can be written as follows:

(11)

Since is concave and and are convex, the ob-
jective function is concave in . Therefore, the optimal
R&D time duration is uniquely determined by the first-order
condition to (11). The first-order condition balances the mar-
ginal benefit of spending one more unit of time on R&D and
the marginal loss of delaying one more unit time of product

(a)

(b)

Fig. 4. (a) Optimal process change. (b) Learning trajectory for the base case.

launching. Extending this basic model of process maturity, fu-
ture research is needed to characterize the detailed shape of the
opportunity cost and how it depends on the competitive
market environment.

VI. NUMERICAL ILLUSTRATION

In this section, we illustrate our results with a sequence of
numerical examples. Unless stated explicitly otherwise, all ex-
amples are based on the following functional forms:

; ; ; and
, where is the price at time . Therefore,

the revenue function can be expressed as
. We consider the static price and pro-

duction rate for our base case. The parameters for our base case
are defined as follows: ; ; ; ;

; ; ; ; ; ; ;
; and .

For these parameter values, our model prescribes a change
and learning trajectory as outlined in Fig. 4(a) and (b), respec-
tively. We observe that while the amount of learning investment
is a decreasing function over time, this is not true for the optimal
change rate. The change rate is increasing for the first three units
of time before it peaks and then decreases to 0 at the end of the
planning horizon.

Next, we reduce the starting level of knowledge to .
The resulting trajectories for process change and learning are
summarized in Fig. 5(a) and (b). Fig. 5(a) directly relates to
the CE idea: for the first two units of time, the process is not
changed at all, while at the same time, the firm invests heavily
into knowledge accumulation. In presence of imperfect knowl-
edge about the production process, the firm shies away from any
modification in recipe. Once yields have reached a satisfactory
level, modifications are allowed to reduce cost. At the end of the
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(a) (b)

(c) (d)

Fig. 5. (a)–(b) Optimal process change and learning trajectory for x(0) = 2. (c)–(d) Impact of x(0) on the optimal process change and learning trajectories.

lifecycle an end-of-horizon effect takes over, and the firm my-
opically harvests its current capability as opposed to building
new one.

To better understand this effect, we gradually decrease the
starting knowledge from to and . The
resulting trajectories are depicted in Fig. 5(c) and (d). We ob-
serve that for high levels of initial knowledge, the change rate
indeed resembles the learning investment, consistent with the
existing literature. However, the lower the initial knowledge, the
higher the need for an extended “process freeze.” We, thus, can
state the following observation related to CE ramp-strategy:

A. CE-Observation 1 (Starting Knowledge)

Production ramp-ups characterized by a low level of starting
knowledge will benefit from a CE ramp.

We now turn to the impact of the learning parameter and the
disruption parameter . The corresponding graphs are depicted
in Fig. 6(a) and (b) respectively. We observe that greater learn-
ability makes investments in learning more attractive, thereby
shifting the optimal learning trajectory upwards. It also allows
the firm to absorb/prepare for future process change at lower
cost, which, in turn, increases the rate of process change. Thus,
especially for integrated and complex processes, which are typ-
ically environments where learning is extremely costly, will a
CE-ramp-up be beneficial.

B. CE-Observation 2 (Learnability)

Production ramp-ups of processes that are very difficult to
improve will benefit from a CE-ramp.

A similar observation can be made with respect to the dis-
ruption parameter , which measures the impact of a change

(a)

(b)

Fig. 6. Impact of (a) learning parameter and (b) disruption parameter on the
optimal process change trajectories.

in recipe on production yields. If the process is very sensitive
to change and even minor modifications can lead to substantial
reduction in yields, the change rate should be slowed down or
even stopped completely until a sufficient knowledge base has
been accumulated.
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(a)

(b)

Fig. 7. Impact of lifecycle length T on the (a) optimal process change and (b)
learning trajectories.

C. CE-Observation 3 (Disruptions)

Production ramp-ups of processes that are extremely sensitive
to even small disruptions will benefit from a CE-ramp.

Next, consider how the optimal policies change with the
duration of the product lifecycle . As we discussed earlier,
shorter lifecycles favor myopic action, and lead to a reduction
in learning investment. This is illustrated by Fig. 7(a) and (b).

Shorter lifecycles lead to less process change. This seems
obvious concerning the end of the lifecycle: the sooner sales
will stop, the earlier one should switch to a fully myopic policy.
Interestingly though, Fig. 7(a) also depicts a similar behavior
at the beginning of the lifecycle. If the lifecycle becomes
shorter, early sales are becoming relatively more important,
and thus even short periods of low yields can have a substantial
impact on the bottom line. As expected, the amount of learning
investment is reduced with a shorter lifecycle [see Fig. 7(b)].
Taken together, these two effects lead to an early process
freeze for extremely short lifecycles, which prompts our fourth
CE-observation.

D. CE-Observation 4 (Length of Lifecycle)

Production ramp-ups of processes with shorter product life-
cycle will benefit from a CE-ramp.

In many situations, management of a fab or a factory is
confronted with an exogenous demand growth trajectory (e.g.,
driven by a new product diffusion process) that needs to be
supported with volume. Consider the Bass diffusion model
with the three standard parameters: , the number of potential
buyers of the new product; , the coefficient of innovation;
and , coefficient of imitation. For a given potential market
size and coefficient of innovation , as shown in Fig. 8(a)
( , ), different values of will generate
different demand growth patterns over the life-cycle of the new
product (see [3] for details).

(a)

(b)

Fig. 8. (a) Bass diffusion. (b) Impact of product lifecycle on the optimal
process change trajectory.

The optimal process change trajectories for the demand
growth patterns shown in Fig. 8(a) are depicted in Fig. 8(b).
Fig. 8(b) shows that a process with a steep demand growth and
higher demand peak will require a delay (and reduction) of
process change. It reflects the fact that when demand grows
rapidly, the negative impact associated with low yields (caused
by process change) is especially profound. Therefore, in such
an environment, a firm should focus on keeping yields at a
high level and delay change. After yields are stabilized at a
certain level and demand growth has slowed down, potential
cost savings driven by process change will outweigh the benefit
of further yields improvement.

E. CE-Observation 5 (Demand Growth Pattern)

Production ramp-ups of processes with steeper demand
growth and higher demand peak will benefit from a CE-ramp.

Finally, we look at the case that the firm seeks to maximize
the present value of the profit stream over the life-cycle [0, ] by
discounting the future profit at a rate . Fig. 9(a) and (b) illustrate
the impact of a discounting rate on the optimal learning and
process change policies. As we can see, higher discounting rate
will lead to less learning and process change investments over
time. This is simply due to the fact that with increasing , the
benefits of learning and process change investments over time
are less valuable to the firm. However, structurally, the policies
remain similar to the special case of analyzed earlier.

VII. DISCUSSION

Our analysis explains the inconsistency between change rates
predicted by most existing models and empirical data discussed
in the Introduction. In a finite planning horizon problem, most
existing learning models predicted that the amount of process



TERWIESCH AND XU: COPY-EXACTLY RAMP-UP STRATEGY 81

(a)

(b)

Fig. 9. Impact of discount rate on the (a) optimal process change and
(b) learning trajectories.

change should be initially at a maximum and then decrease
with time. This is inconsistent with empirical observations
from high-tech industries where frequently process change
is delayed to a point in time when the process has reached a
certain amount of maturity [22]. This inconsistency is most
visible when looking at INTEL’s CE ramp strategy. Following
the work of Carillo and Gaimon [7], we incorporate a disruptive
effect of process change into our analysis. This allows us to
shed light on the question when a firm should avoid any process
change during the ramp-up. We show that such CE ramps are
beneficial if the initial understanding of the process at transfer
into production is low, if the process is difficult to improve, if
small modifications can have a large effect, and if the overall
lifecycle is short.

One limitation of our study is its restriction to a single
manufacturing plant. Studying ramp-up in a multiplant system
provides a promising opportunity for future research, as it
brings additional reasons to follow a copy exactly ramp-up. A
second opportunity for future research lies in a richer descrip-
tion of the product’s market dynamics. Specifically, market
dynamics such as new product diffusion and price erosions
are of great importance during production ramp-up and would
create interesting interactions with decision variables outlined
in our model. Finally, following our discussion related to Figs. 1
and 2, there seems to be a need to further disentangle the two
concepts of process change and learning to conduct a deeper
empirical study related to process change and the idea of CE.

APPENDIX

Before we present the proofs, we derive the necessary condi-
tions by the Indirect Pontryagin Maximum Principle for optimal

control model with pure state constraint (see [16] and [27]). The
Hamiltonian associated with the optimal control problem is

(12)

where and are the co-state variables associated with
the trajectory (5) and (6), respectively. The nonnegativity con-
straint (8) for is guaranteed by the nonnegativity of control
variable and (6). However, the nonnegativity constraint (7)
for cannot be guaranteed. In order to incorporate constraint
(7), we introduce the Lagrangian as following:

where is the Lagrange multiplier associated with con-
straint (7). The adjoint systems of this model are shown as the
following:

(13)

(14)

and with the boundary conditions and .
By the Indirect Pontryagin Maximum Principle, the optimal
learning effort and the optimal process change rate
need to satisfy the following necessary conditions, respectively:

(15)

(16)

In addition, needs to satisfy the complementary slack-
ness conditions as the following:

(17)

(18)

(19)

With respect to , the model can be solved as a static cal-
culus problem. Therefore, the optimal production path
needs to satisfy the following first-order condition:

(20)

Equations (15)–(20) are the necessary conditions for the opti-
mality of the model. Furthermore, by the concavity assumption
of and the convexity assumptions of , we can
see that the Hamiltonian is concave in the state variables
and . Since the state governing (5) and (6) are linear in the
control variables, according to Mangasarian [21], the necessary
conditions for optimality are also sufficient.

Proof of Theorem 1: To prove part (1), we will show that
the optimal learning investment, , is nonincreasing in
for any given time by two steps. At first, we show the optimal
learning investment is nonincreasing in for . Then,
we show the optimal learning investment for is no
less than the optimal learning investment for any to
complete the proof.

The optimal learning investment needs to satisfy the
necessary condition (15). If , from (17), we have

. Therefore, (15) can be reduced to

(21)
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Since , by the convexity assumption of the equa-
tion implies is increasing in . is the marginal
value of an additional unit of knowledge at time . Since the
objective function is concave in , is nonincreasing in

that is the knowledge level at time . Therefore, we can see
that is nonincreasing in .

For , from (17) and (18), we know that is not
determined, however, . Therefore, the optimal learning
investment for , , is the solution of the following
necessary condition:

(22)

Consider for such that the difference of for
and at time is infinitely close to 0. Let denote the

optimal learning investment for at time as
which is the solution of (21). Comparing the left-hand sides of
(21) and (22), we can see that . Since

(Convexity), the solution of (22), , is no
less than that is the solution of (21). Finally, by the proof
for , we can conclude is no less than the optimal
learning investment for any . Thus, part (1) follows.

The proof of part (2) is similar to the one for part (1). We
will only provide the proof for . At any given time
, the optimal process change rate, , needs to satisfy (16).

If , from (17), we have . Then, (16) can be
reduced to

(23)

For any given at time , the lefthand side of (23) is
decreasing in . Combining the convexity of , we
can see that for any given , is nondecreasing in .
Therefore, part (2) follows.

Proof of Corollary 2: is the marginal value of an addi-
tional unit of process change at time . Since the objective func-
tion is concave in , by the convexity assumption of ,
we know that is nonincreasing in . Thus, for , in
order to have the same as at time , it needs a smaller

in (16). Since is nonincreasing in , the corollary
follows.

Proof of Theorem 2(a): Differentiate both sides of (15) with
respect to time , we have the following:

(24)

By the convexity assumption of , we can see that the
sign of is the same as the sign of the right-hand side of
(24). From (13) and (19), we can see that and .
Therefore, .

Proof of Theorem 2(b): Differentiate both sides of (16) with
respect to time and using (13) and (14) to eliminate and

, we have the following:

(25)

Notice that . Therefore, the sign of is the
same as the sign of the lefthand side of (25). Since both the rev-
enue function and are increasing functions, combining

with (19), the first term of the left-hand side of (25) is nonneg-
ative. Since is a decreasing function and , the
second term of the left-hand side of (25) is nonpositive. There-
fore, if

.
Proof of Theorem 2(c): The optimal output rate should

satisfy (20). Differentiate both sides of (20) with respect to time
and using (6) to eliminate , we have

(26)

By the concavity and supermodular assumptions of the rev-
enue function, we know that and . There-
fore, the sign of is the same as the sign of the righthand
side of (26). If , the righthand side is always nonnega-
tive. That implies increases over time. However, if

, increases (decreases) over time if
.

Lemma 1 (Properties of the Co-State Variables): The
co-state variables, and , are nonnegative nonin-
creasing over time.

Proof of Lemma 1: Because is increasing in
, is increasing in and is decreasing

in by assumptions, the above lemma follows from differ-
ential (13) and (14) and the boundary conditions and

.
Proof of Theorem 3: Solving the first-order differential (13)

and (14), we have the following expressions for and :

(27)

(28)

Substitute (27) into (15) and differentiate both side of (15)
with respect to , we have

where and are expressed in (27) and (28), respectively.
Therefore, by Lemma 1, (18), and convexity of , we can
see .

From (5), we have . Substitute it,
(27) and (28) into (15) and differentiate both side of (15) with
respect to , we have

Thus, by Lemma 1, (18), convexity of , and the non-
negativity of and , we have that .

Substitute (27) and (28) into (16) and differentiate both side
of (16) with respect to , we have

Therefore, by Lemma 1, (18), and convexity of , we
have .
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From (5), we have . Substitute it,
(27), and (28) into (16) and differentiate both side of (16) with
respect to , we have

(29)

Although , and are all positive, the sign
of is not determined.
Therefore, the sign of could be positive or negative.

Proof of Theorem 4: The Hamiltonian associated with the
optimal control model is

(30)
where and are the co-state variables associated with
the trajectory equations. We introduce the Lagrangian to incor-
porate the state constraint (7)

(31)

The corresponding adjoint systems of the model have the fol-
lowing format:

(32)

(33)

with the boundary conditions and .
By the Indirect Pontryagin Maximum Principle for pure state

constraints, the optimal learning effort and the optimal
process change rate need to satisfy the following nec-
essary conditions that have the same forms as (15) and (16),
respectively,

(34)

(35)

The adjoint systems (32), (33), and the boundary conditions
imply that and i.e., both co-state variables
are constants over the whole time horizon [0, ]. If ,
for all , we have . Therefore, from (34) and
(35), Theorem 4 follows.
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