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The main objective of this research was to develop a new concept and approach to extract knowledge 
from satellite imageries for near real-time drought monitoring. The near real-time data downloaded from 
the Atlantic Bird satellite were used to produce the drought spatial distribution. Our results showed that 
approximately 40% of the observed areas exhibited negative deviation. In this study, the possibility of 
using the near real-time spatio-temporal Meteosat Second Generation (MSG) data for drought 
monitoring in food insecure areas of Ethiopia was tested, and promising results were obtained. The 
output of this research is expected to assist decision makers in taking timely and appropriate action in 
order to save millions of lives in drought-affected areas. 
 
INTRODUCTION 
 

Because of climate change and variability, drought has become a recurrent phenomenon in several 
countries across the globe. It is manifested in erratic and uncertain rainfall distribution in rainfall-
dependent farming areas, especially in arid and semi-arid ecosystems. Frequent and severe drought has 
become one of the most important natural disasters in sub-Saharan Africa and often results in serious 
economic, social, and environmental crises (Tadesse et al., 2008) marked by the creation of uncertain 
agricultural economies (Kandji &Verchot 2006). 

Ethiopia is a sub-Saharan country that has been affected by drought. Millions of lives have been lost 
because of recurring droughts in the past several decades (Ibid). Due to climatic changes, drought occurs 
every two years in different parts of Ethiopia (Kandji &Verchot 2006; NMSA, 1996). In addition, the 
drought recurrence cycle shortens over time while the affected area is widening, impacting additional 
parts of the country that were once unaffected (NMSA, 1996). In order to respond to the effects of 
drought, Ethiopia has been conducting drought assessment and monitoring missions. 
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In Ethiopia, drought assessment and monitoring efforts have been based on conventional methods that 
rely on the availability of meteorological data, which is very tedious and time consuming to collect. 
Moreover, meteorological data and weather information dissemination is also a challenge. Consequently, 
millions of lives may be lost before the actual information is submitted to the appropriate decisions 
makers (Kandji &Verchot 2006). The information that is produced in accordance with the conventional 
approach is usually highly uncertain for employing rescue missions; therefore, producing reliable and 
timely information for decision makers is of the utmost importance. 

Traditionally, there are several operational indices in drought assessment and monitoring that are 
based on rainfall data. These indices are often not easily accessible, nor are they tailored to be 
conveniently understood by decision makers (Ji & Peters, 2003). The common approach that is used to 
derive the necessary information is the application of climatic drought indices, such as the Palmer 
Drought Monitoring Index, which has been widely used by the U.S. Department of Agriculture (Jain et 
al., 2009). Another popular climatic drought index is the Standardized Precipitation Index (SPI) that was 
developed by McKee et al. (1993), which can identify data on emerging drought months for regional and 
global applications. Mishra and Desai (2005) have adopted the SPI for parts of India and have used that 
data to compile a drought severity area frequency curve. These drought severity and monitoring indices 
are based on point data that are measured at the different meteorological stations located in a wide area. In 
remote areas where there is not a dense network of stations, extrapolation of rainfall observation from 
nearby stations is commonly used, resulting in high uncertainty about its usefulness for real-time rescue 
missions. 

At the present, decision makers in many countries use remote sensing to close this gap and obtain the 
desired information. Remote sensing data, or data from satellite sensors, can provide continuous datasets 
that can be used to detect the onset of a drought as well as its duration and magnitude (Thiruvengadachari 
& Gopalkrishana, 1993). Remote sensing is far superior to conventional methods (Jain et al., 2009) for 
drought monitoring and early warning applications. The challenge in applying remote sensing data in 
drought monitoring and in issuing early warnings is that the various indices must be validated and 
calibrated to the specific region and ecological conditions (Singh et al., 2003; Jain et al., 2009). So far, no 
significant efforts have been made to validate and calibrate remote sensing data in food insecure areas 
within Ethiopia. Thus, the available information is unclear, uncertain, and difficult for decision makers to 
access (FEWS NET, 2009). In addition, even though drought has its own state and behavior, there have 
been no past efforts to detect drought by its own properties as a spatial object (Rulinda et al., 2010). 

In remotely sensed images, a pixel or group of pixels with similar spectral reflectance characterize the 
object of interest. Remote sensing object classification methods usually consider texture information of 
features on the earth. Pixels identified as having the same texture are grouped together, and those groups 
are considered objects (Benz et al., 2004), which can represent physical features on earth, such as roads, 
parcels, or bodies of water. When these physical features are classified based on texture, they are 
considered to be physical objects (Ibid). 

The concept of object identification and analysis can be extended to non-physical features on the 
ground, and are usually referred to as virtual geographic objects (Batty et al., 1999), which can be defined 
as measurements having geographic information but not representing physical features on earth (Huang et 
al., 2001). The objects in this case are defined based on some attributes of their physical features. Drought 
is a virtual geographic object, and in this research, we used NDVI and NDVI deviation values of satellite 
images to characterize its incidence. In the actual identification and analysis of drought in this research, 
the concept of virtual GIS techniques was used. Virtual GIS uses the “knowledge base” that is inherent in 
GIS for automatic interpretation of remotely sensed images (Batty et al., 199). This is based on the 
principles of virtual geography, which is the study of place as ethereal space and its process inside 
computers, and the ways in which this space inside computers is changing material place outside 
computers (Ibid). 

The concept of virtual reality is very important in the identification and representation of drought 
objects on the real ground and in computer representation. Virtual reality is a computer graphic 
technology that can be used to emulate the real world in different dimensions, with which users can 
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participate in the virtual environment by applying different data manipulation mechanisms (Huang et al., 
2001) 

The main objective of this research was to develop a new concept and approach to extract knowledge 
from satellite imageries for near real-time drought monitoring. Advanced technology satellite products 
with high temporal resolution (e.g., MSG data every 15 minutes) are cost effective and can serve to detect 
the onset of a drought and its duration and magnitude. Such information can help decision makers to take 
appropriate actions in a timely manner, reduce the impact of drought conditions, and mitigate drought’s 
adverse effects on the environment. This effort is indicated to be one of the climatic change mitigation 
efforts for countries that have been affected by recurrent droughts in the past (Kandji &Verchot 2006). 
 
AN OVERVIEW OF DROUGHT MONITORING AND MODELING 
 

Drought is defined as “the naturally occurring phenomenon that exists when precipitation has been 
significantly below normal recorded levels, causing serious hydrological imbalances that adversely affects 
land resource production systems” (UNCCD, 1999). Drought is also defined as a prolonged abnormally 
dry period when there is not enough water for users’ normal needs, resulting in extensive damage to crops 
and a loss of yields (Wilhite, 2005). These definitions are conceptual explanations that provide the basis 
for the operational meaning. The operational definition of drought focuses on identifying the beginning, 
end, spatial extent, and severity of the drought in a given region and is based on scientific reasoning. The 
analysis is conducted by using hydro-meteorological information and is beneficial in developing drought 
policies, early warning monitoring systems, mitigation strategies, and preparedness plans (Smakhtin & 
Hughes, 2004). Generally, the most prominent types of drought are meteorological, agricultural, and 
hydrological droughts (Wilhite, 2000; Obasi, 1994) (Figure 1a). Meteorological drought is usually 
defined according to the degree of dryness (i.e., in comparison to the “normal” or average amount of 
precipitation of the region) and the duration of the dry period at a particular place and at a particular time. 
Hydrological drought is associated with the effects of periods of precipitation (including snowfall) 
shortfalls on the surface or subsurface water supply (i.e., stream flow, reservoir and lake levels, and 
ground water). Although all droughts originate from a deficiency of precipitation, hydrologists are more 
concerned with how this deficiency plays out through the hydrologic system. Hydrological drought is 
associated with the effects of low rainfall on the water levels of rivers, reservoirs, lakes and aquifers. 
Agricultural drought links various characteristics of meteorological and hydrological drought to 
agricultural impacts, focusing on precipitation shortages, differences between actual and potential evapo-
transpiration, soil water deficits, and reduced ground water or reservoir levels (Wilhite, 2000). 
Agricultural drought occurs when there is not enough water available for a particular crop to grow at a 
particular time. This research focuses on agricultural drought analysis and an early warning system. The 
frequency of agricultural drought in Ethiopia is presented in Figure 1b and c. 

The process of monitoring agricultural (i.e., vegetative) drought usually requires remote sensing 
technologies and a large amount of temporal data, in addition to traditional climate information. The most 
widely used source of satellite data is the NDVI (Rulinda et al., 2010), which is commonly calculated by 
using image data from polar orbiting satellites that carry sensors that detect radiation in red and infrared 
wavelengths (Fensholt et al., 2006). The NDVI is used, in this case, by comparing the deviation of the 
current satellite observation from the historical average within a certain time period, or window, of 
interest. In the analysis of droughts, their onset, duration, and severity are often difficult to determine and 
the characteristics may vary significantly from one region to another (Rulinda et al., 2010). In rainfall-
dependent agriculture production areas, seasonal rainfall variability is inevitably reflected in both highly 
variable production levels and in the risk-averse livelihoods of local farmers (Cooper et al., 2008). Africa 
has a long history of rainfall fluctuations of varying lengths and intensities (Nicholson, 1994), primarily 
because of climate changes. Recent studies indicate varying behavior of rainfall trends in Africa at 
different spatial and temporal scales. A recent study also demonstrated a decrease in rainfall in east Africa 
between 2003 and 2008 (Swenson & Wahr, 2009), in which drought and famine situations were 
periodically reported (FEWS NET, 2009). Drought has a particularly negative impact on agricultural 
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production in the eastern African region because most of the agriculture there is dependent on rainfall 
rather than irrigation (Thorton et al., 2009). 

The conventional approach to drought monitoring and early warning systems that uses ground-based 
data collection is tedious, time consuming, and difficult (Prasad et al., 2007). In recent years, remote 
sensing data has been used to monitor agro-climatic conditions, the state of the agricultural fields, 
vegetation cover, and to estimate crop yield in various countries. In particular, the Advanced Very High 
Resolution Radiometer (AVHRR) NDVI information has been used in vegetation monitoring, crop yields 
assessment, and forecasting (Hayes et al., 1982; Benedetti & Rossini, 1993; Quarmby et al., 1993; 
Unganai & Kogan, 1998; Kogan et al., 2003). The National Oceanic and Atmospheric Administration’s 
(NOAA) AVHRR series satellite feedback provides a long-term record of NDVI data that can be used to 
predict crop yield (Prasad et al., 2007). Yield prediction is part of the drought monitoring process in that 
crop yield information is essential to determine the food assurance of a given region. 
 
Drought Object Modeling 

The concept of object identification and modeling has been an ongoing scientific effort for converting 
remotely sensed images into geographic phenomena (Stein et al., 2009). In this research, an object is 
noted in the context of object-oriented modeling (Woryboys et al., 1990); this is based on the basic 
principle that an object has two characteristics: state and behavior (Woryboys et al., 1990; Budd, 2000). 
State is the attribute or information contained in an object, and behavior is the set of actions in which an 
object performs (Budd, 2000). When identifying and modeling the drought object by using satellite 
images, state refers to the actual reflectance attributes (i.e., the digital numbers that are registered by the 
satellite sensors as pixel values or index values, such as NDVI), and behavior means that when a drought 
object occurs on the ground, plants die or cease the process of photosynthesis (i.e., the red band of the 
spectrum is not used by the plant and is reflected back to the satellite sensor). As a consequence, yield is 
reduced in the long-term effects (Tucker, 1979; UNISDR, 2009). 

There are two key questions to be asked when identifying the state and behavior of any object: "what 
possible states (i.e., attributes) can a give object be in", and "what possible behavior (i.e., actions) can this 
object perform when it happens?" (Budd, 2000). The geographic object that we are interested in for this 
research is agricultural drought – where it results in reduced biomass and yield (Wilhite, 2005). 

The concept of identifying and modeling drought as an object is new (Rulinda et al., 2010). Rulinda 
et al. (2010) further indicate that "a next step in drought modeling is an approach focusing on spatial 
object and this kind of object can be built from different temporal resolution images". In remote sensing, 
objects are identified and subsequently classified on the basis of pixel information, and the objects are 
subsequently tracked in time, during which, their behavior may be governed by external factors that must 
also be identified and quantified (Stein et al., 2009). This process is usually accomplished through image 
mining techniques. 

Image mining is defined as the analysis of large sets of observational images to find suspected or 
unsuspected relationships and to summarize the data in novel ways that are both understandable and 
useful to stakeholders (Stein, 2008). Object identification in remote sensing is usually conducted by 
converting raster pixel values to geographic objects. Usually, the image is segmented first, providing 
approximately homogeneous segments, then classified (Stein et al., 2009). Stein et al. (2009) further 
states that various procedures for image segmentation are well-documented, and include procedures based 
on mathematical morphology, edge detection, and the identification of homogeneity in one band or in a 
set of bands. Classification practices include statistical routines, such as k-nearest neighbour classifiers, 
and increasingly fuzzy classification methods (Ibid). 
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FIGURE 1 
DROUGHT CLASSIFICATION 

(adapted from UNISDR 2009) 
(a); frequency of agricultural droughts in Ethiopia during the first rainy seasons (February – May) 

(b); and second rainy seasons (July - September) 
(c) (adapted from NMSA, 1996) 

 

a 

b c 

 
MATERIALS AND METHODS 
 
Theoretical Framework 

One of the criteria for innovative academic research is that it must have a clearly defined theoretical 
framework, which helps to differentiate research from consultants’ work (Gregor, 2006). Defining the 
theoretical framework for a given study also helps to accumulate knowledge in a systematic manner; such 
knowledge enlightens professional practice (Gregor, 2006; Gregor & Jones, 2007). Taking this fact into 
account, the theoretical framework for this research is “design science.” Gregor (2006) indicates that 
“design theory” provides explicit prescriptions for constructing an artifact and mainly answers the 
question of how to do something. 
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Design science is a problem-solving process. In their problem-solving process, Hevner et al. (2004) 
present seven guidelines with which to conduct design science research. These guidelines consider the 
design as an artifact, problem relevance, design evaluation, research contributions, research rigor, design 
as a search process, and finally, the communications of research. The study presented in this paper 
modifies Hevner’s et al. (2004) seven guidelines into five steps: identification, modeling, tracking, 
prediction, and communication with stakeholders. The artifact for the process of knowledge discovery 
from satellite images is presented in Figure 2. 

An artifact is used to describe something that is artificial or constructed by humans, as opposed to 
something that occurs naturally (Simon, 1996). In this research, “artifact” signifies the abstract 
representation of the design science research process and its final information delivery to decision 
makers. 
 

FIGURE 2 
AN ARTIFACT FOR THE PROCESS OF KNOWLEDGE  

DISCOVERY FROM SATELLITE IMAGERIES 
(adopted from Stein et al., 2009) 

 

 
 
Study Area 

The study area for this research is the whole of Ethiopia, which occupies the interior of the eastern 
Horn of Africa, stretching between 30 and 150 N latitude and 330 and 480 E longitude, with a total area of 
1.13 million km2 (EMA, 1988). 

Ethiopia is located in the tropics and variations in altitude have produced a variety of microclimates. 
The mean annual rainfall ranges from 2,000mm in some pocket areas in the southwest highlands, to less 
than 250mm in the lowlands. In general, annual precipitation ranges from 800mm to 2,200mm in the 
highlands (>1500 meters above sea level) and varies from less than 200mm to 800mm in the lowlands 

pocket areas in the southwest (NMSA, 1996). 
 
Methods 

The satellite data were extracted using geographic information systems (GIS) techniques. ILWIS 3.6 
software was used in the analysis of the remote sensing imagery. The near real-time data downloaded 
from the Atlantic Bird satellite, were used to produce the drought monitoring indices. During the analysis, 
cloud-contaminated pixels were removed from each individual image by examining the reflectance and 
temperatures. After completing the pre-processing of the satellite images, the NDVI values of the images 
were calculated using Equation 1: 

rednir

rednirNDVI      (1) 
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where red  (0.4–0.7 mm) and nir (0.75–1.1 mm) are reflectance in red and near infrared bands of the 
satellite imageries, respectively. 

NDVI is the most commonly used vegetation index. It has been shown to be related to vegetation 
vigor, percentage green cover, and biomass (Myneni & Asrar, 1994; Anyamba & Tucker, 2003; Pettorelli 
& Vik 2005). It is a non-linear function that varies between - red  

and nir are zero. NDVI values for vegetated land areas generally range from approximately 0.1 to 0.7. 
Values greater than 0.5 indicate dense vegetation, whereas values lower than 0.1 indicate near zero 
vegetation such as barren area, rock, sand, or snow (Tucker, 1979). 

In this research, the daily NDVI values were aggregated into a decadal basis from MSG satellite data. 
In one year, there are 36 dekads (one dekad is equal to 10 days). The decadal NDVI values were 
compared with the long-term mean NDVI value of the same dekad from NOAA AVHRR satellite data. 
The difference between these two data elements is called deviation of drought severity index, or the 
deviation of the NDVI (Dev_NDVI) (Tucker, 1979). The Dev_NDVI was calculated using Equation 2. 
When the Dev_NDVI is negative, it indicates below normal vegetation conditions and might suggest a 
drought situation (Tucker, 1979). We used Dev_NDVI to spatially locate the occurrence of drought. 
 

iMeanNDVIiNDVINDVIDev ____    (2) 
 
where iNDVI _  and iMeanNDVI __ are the actual 10-day composite NDVI and the long-term mean 
for the same dekad NDVI values, respectively. iNDVI _  was acquired from MSG and 

iMeanNDVI __  from NOAA. 
 
Materials 

For this study, satellite data from Meteosat Second Generation (MSG) and National Oceanic and 
Atmospheric Administration (NOAA) AVHRR were used. MSG is the new European system of 
geostationary meteorological satellites with the associated infrastructure; it was developed to succeed the 
highly successful series of original Meteosat satellites that has served the meteorological community 
since the first launch in 1977 (EUMETSAT, 2005). The advanced Spinning Enhanced Visible and 
Infrared Imager (SEVIRI) radiometer onboard the MSG satellites enables the Earth to be scanned in 12 
spectral channels from visible to thermal infrared at 15 minute intervals. Each of the 12 channels has one 
or more specific applications, either when used alone or in conjunction with data from other channels. 
From these 12 channels, this research used Channels 1 and 2 to detect vegetation condition. These two 
visible channels are well known from similar channels of the AVHRR instrument flown on NOAA 
satellites and can be used in combination to generate vegetation indices, such as NDVI (EUMETSAT, 
2005). 

NOAA is owned by the U.S. government; the sensor on board NOAA mission that is relevant for 
earth observation is a very high-resolution radiometer (AVHRR). NOAA and NASA have jointly 
produced long-term AVHRR datasets that have been consistently processed for global change research. 
These datasets cover the period from July 1981 to present and are 10-day composites of daily data [red, 
near infrared (NIR), and thermal wavelengths] that are mapped to a global equal area projection 
(EUMETSAT, 2005). There are three 10-day composites per month; the first is for days 1 through 10, the 
second is for days 11 through 20, and the third is for the remaining days. The data contains NDVI, a 
highly correlated parameter to surface vegetation, derived from the visible and NIR channel reflectance 
(EUMETSAT, 2005; Holben, 1986). This pathfinder dataset has gone through many stages of calibration 
and correction (Smith et al., 1997). 
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RESULTS AND DISCUSSIONS 
 
Relationships Between Precipitation and NDVI 

In order to analyze the relationship between RF and NDVI values, data collected from 1982 through 
2004 were used. These years were selected because there were complete data sets for both RF and 
imageries during those time periods. The RF data was obtained from the National Meteorological Agency 
of Ethiopia and the NDVI values were taken from http://earlywarning.cr.usgs.gov/adds/datathemephp. 

To observe the relationships between RF and NDVI, Ethiopia was divided into 22 grids; each grid 
was 2 degrees by 2 degrees (Figure 3). From 1982 to 2004, the RF recorded by all stations inside the grids 
was averaged and an average point data was generated. The same procedure was followed for the NOAA 
AVHRR NDVI values of the 2 degrees by 2 degrees grids. The descriptive statistics for the 6-month 
average values for both RF and NDVI are presented in Table 1. In addition, the scatter plots for the 4-
month period average values from June to September are presented in Figure 4. 
 

FIGURE 3 
THE MAP OF ETHIOPIA WITH 2x2 DEGREE GRIDS 
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TABLE 1 
DESCRIPTIVE STATISTICS FOR AVERAGE NDVI AND AVERAGE RF FROM 1982-2004 

 
Items June July August September 

NDVI RF NDVI RF NDVI RF NDVI RF 
Mean 0.35 84.73 0.33 141.97 0.36 147.03 0.39 104.35 
Median 0.30 51.90 0.31 128.67 0.36 148.26 0.39 98.83 
Standard Deviation 0.14 89.80 0.15 126.73 0.16 124.19 0.17 76.92 
Minimum 0.11 1.23 0.10 0.26 0.13 0.45 0.13 12.76 
Maximum 0.66 311.71 0.66 359.76 0.68 345.69 0.70 315.76 

 
There is a strong relationship between the recorded RF data and the NDVI values obtained from each 

2 degrees by 2 degrees grid. The highest R2 value was observed for September, whereas the lowest value 
was for July (Figure 4). The strong relationship between the September RF and NDVI values could be 
explained by the fact that during this month, if there is adequate RF, plants can have optimal 
photosynthesis (high absorption of the red band of the spectrum), resulting in high NDVI values. The 
lowest relationship between July RF and NDVI value was unexpected and needs further research. Overall, 
it is convincing that we can use NDVI values to monitor drought (shortage of rainfall for monitoring 
agricultural drought). 

FIGURE 4 
SCATTER PLOTS SHOWING THE CORRESPONDENCE BETWEEN THE 

AVERAGE NDVI AND RF FOR 1982 TO 2004 
June (a), July (b), August (c), and September (d) are the major rainy and plant-growing months 
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NDVI and Deviation of NDVI for Spatially Locating Drought 
In this section, we present the status of drought conditions in parts of eastern African and southern 

Asian countries in 2009 using the NDVI parameter. Northern Sudan and southern Asian countries were 
purposely included in the analysis window for controlling whether the result agrees with the ground 
reality. These areas have no natural vegetation and the assumption is that if the result is correct, there will 
be no vegetation condition deviation for these areas. 

This analysis was also conducted primarily with the aim of testing the applicability of MSG data for 
spatio-temporal drought monitoring. The preliminary results were obtained by using October 2009 MSG 
data and the long-term average NDVI NOAA AVHRR data. The raw MSG data were acquired from the 
Ethiopian Meteorological Agency in Addis Ababa. The long-term records of decadal NDVI data from 
NOAA were downloaded from http://earlywarning.cr.usgs.gov/adds/datathemephp and covered the first 
dekads of October from 1982 to 2009. Using these two datasets, the Dev_NDVI was calculated. 

The actual drought condition was determined by comparing the NDVI for the first dekad of October 
2009 with the long-term mean NDVI using NOAA satellite data. The data were analyzed using ILWIS 
3.6 software: the 10-days images of MSG (1-10 October 2009) were imported to ILWIS raster image 
format using the “Multiple times in one file” option. This means that all 10 bands were stacked (maplist) 
together and were ready for the NDVI calculation. After importing the three-band image data to ILWIS 
3.6 raster format, a script was written for calculating the Dev_NDVI. 

Our results show that approximately 40% of the area exhibited negative deviation (Figures 5 and 6). 
Figure 6 was obtained by using the first dekad of October 2009 MSG and the 30-year long-term average 
NOAA AVHRR NDVI data. This indicates a prevalence of drought in 2009 in east African and southern 
Asian countries during the first dekad of October 2009. These results align with recorded RF in 2009 in 
most parts of Ethiopia; that is, the recorded rainfall amounts were below the overall average (FEWS NET, 
2009). 
 

FIGURE 5 
DEV_NDVI COMPARISON OF THE CHANGE IN VEGETATION 

 

 
 

In Figure 6, the grey areas show where there is either no change or positive deviation from the long-
term average. The dark grey areas show negative deviations, indicating the prevailing drought. 

The analysis of the Vegetation Condition Index (VCI) also indicates the occurrence of drought in the 
study area (Figure 7) and shows (in percentages) the vegetation condition of the actual dekad NDVI 
compared to the long-term maximum and minimum of the corresponding dekad. Figure 7 was obtained 
by using data from the first dekad of October 2009 MSG and the 30-year long-term average NOAA 
AVHRR NDVI data. In principle, 50% reflects a fair vegetation condition; our geo-spatial analysis shows 
that approximately 37% of the total area had less than 40% VCI, indicating the occurrence of a drought. 
Areas with below normal vegetation cover were located in the central part of Sudan and northern and 
southeast Ethiopia. Only 18% of the area had optimal and above normal vegetation conditions (Figure 7); 
these areas are located in the central part of Sudan and the northwest corner of Ethiopia. 
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FIGURE 6 
DEV_NDVI SPATIAL DISTRIBUTION 

1 = dark grey are areas with negative deviations indicating the prevailing drought; 2 = grey are 
areas where there is no change or positive deviation from the long term average. The black lines are 

country boundaries 
 

 
 

FIGURE 7 
VEGETATION CONDITION INDEX (VDI) MAP FOR MONITORING DROUGHT 

Areas in white are areas where there had been no vegetation in the past and/or found to be 
water bodies. Country boundaries are marked in red. 
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Drought Object Extractions 
To extract drought objects, a subset image was created in the eastern part of Ethiopia (Figure 8). This 

area was selected because the maximum NDVI deviation value and the highest area coverage of the 
NDVI deviations were observed in this location. Using this subset image, the intensity of drought in the 
area was assessed. For this purpose, a total of 146 points were systematically generated in a point grid 
map of the study area. 

The descriptive statistics for these 146 points are presented in Table 2. From these selected point data, 
about 71% of the pixels were found to have negative deviation values and about 29 pixels had positive 
NDVI deviations. The assumption here is that the negative NDVI deviations are revealing the prevailing 
drought in the area and the positive deviations are showing the healthy vegetation growth in the area 
during the first dekad of October 2009. The NDVI deviation values must be calibrated and must be 
related to the ground measurement RF records. NDVI deviation values calibrations and relating these 
values with actual drought intensity in the area is the future research agenda identified in this research. 
From the selected data sets, pixels with zero deviation value were not recorded. 

The pixels were also found to have some pattern showing drought object distribution in the area. In 
the original image, there are ranges of negative to positive deviations. For display purposes, the negative 
deviations were multiplied by -1, and the original negative deviation values become positive and the 
positive deviations become negative. From Figure 8, it can be observed that there are some local 
maximum deviation values that were found to decrease gradually to local minimum values, revealing the 
possibility of identifying drought objects. On this figure, the red areas are pixels with maximum 
deviations that gradually decrease to the yellow color, and the blue colors show positive deviations of the 
pixels (in this case, with optimum red band use for plant photosynthesis activity or conversion of light 
energy into chemical energy). 

The drought objects were extracted using the concepts of local maxima and local minima NDVI 
deviation values. The maximum deviation value recorded was -0.552. The histogram of NDVI deviation 
values for the whole of Ethiopia is presented on Figure 9; most of the pixels were found in the range of   -
0.2 to 0.1, with the highest frequency being around -0.05. 
 

TABLE 2 
DESCRIPTIVE STATISTICS FOR DEV_NDVI VALUES IN THE SUBSET IMAGE 

 
No Description Value 
1 Mean -0.077 
2 Median -0.080 
3 Standard Deviation 0.076 
4 Minimum -0.282 
5 Maximum 0.115 
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FIGURE 8 
3D REPRESENTATION OF NDVI DEVIATION VALUES FOR THE FIRST  

DEKAD OF OCTOBER 2009 
The graph surfaces represent relatively low NDVI deviation in the blue areas and the highest 

deviations in the deep red areas 
 

 
 

FIGURE 9 
HISTOGRAM FOR DEV_NDVI DISTRIBUTIONS 
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The NDVI deviation values for the whole of Ethiopia were grouped into four classes. This grouping is 
based on the above assumption in that negative NDVI deviations are indicative of the prevailing drought. 
These classes were made according to Mckee’s et al. (1993) definition of drought categories of standard 
precipitation index (SPI). One of the future research agendas identified from this research is to calibrate 
and correlate the classes derived from SPI and the Dev_NDVI classes proposed from this research. 

The NDVI deviation values derived from the first dekad of October 2009 were classified and 
presented in Table 3. Accordingly, the Dev_NDVI values range from -0.55 (severe drought) to 0.38 
(above optimal). Most of the pixels were in the range of > -
followed by > - -0.05 (drought) (Figure 9). This shows that, of all the pixels assessed, drought or 
moderately dry has the highest share, indicating the prevalence of drought in the first dekad of October 
2009 in Ethiopia. The four NDVI deviation values were classified using the Nearest Neighbor Rule 
classification and the map is presented in Figure 10. 

Figure 10 shows that the severe drought class was observed in different parts of the country. The 
highest patches were observed in the north-western corner and the central part of the country. The second 
drought class (moderately dry) was found next to the severe drought patches in the central, northern, 
southern, and eastern part of Ethiopia. In this map, the white or missing values were cloud pixels and the 
locations were purposely excluded from drought assessment during the analysis. 

The drought object extraction was done by grouping similar pixels as one object (pixels in the same 
drought classes and spatially neighbouring pixels were grouped to form one object). The two drought 
classes were extracted and their spatial distribution is presented in Figure 11. A total of 590 severe 
drought objects and 1243 drought objects were extracted in this analysis; the summary statistics for these 
drought classes are presented in Table 3. 
 

TABLE 3 
NDVI DEVIATION CLASSES AND RANGE OF VALUES 

 
No Drought classes Range of 

Dev_NDVI values 
Number of objects 

(pixels) 
Area 
(ha) 

1 Sever drought (extremely dry) -0.2 2086 3675594.58 
2 Drought (moderately dry) >- -0.05 25937 45701772.11 
3 Near normal > -  34691 61126582.73 
4 Above optimum (extremely wet) > 0.1 1868 3291472.04 

Total  64582 113795421.50 
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FIGURE 10 
DROUGHT CLASSES DISTRIBUTIONS OF FIRST DEKAD IN OCTOBER 2009 IN ETHIOPIA 

 

 
FIGURE 11 

SPATIAL DISTRIBUTION OF SEVERE DROUGHT AND DROUGHT CLASSES 
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CONCLUSIONS 
 
In this research, the preliminary results produced promising scientific outputs for implementing 

satellite data for drought monitoring. This research is currently in its early stages, although there is some 
convincing evidence that it is possible to model and predict drought conditions using real-time MSG data. 
In this research, we developed a new concept and approach for extracting knowledge from satellite 
imageries for near real-time drought monitoring. The approach was investigated using the two known 
meteorological satellites, MSG and NOAA AVHRR to extract drought objects in the first dekad of 
October 2009 in Ethiopia. The approach was tested with the assumption that negative NDVI deviations 
depict the prevailing drought in the area, while the positive deviations show the healthy vegetation growth 
in the area. NDVI deviation value calibrations and relating these values to actual drought intensity in the 
area is one of the research agendas identified in this research. 

The preliminary results suggest that real-time spatiotemporal MSG data can be used for drought 
monitoring and early warning systems in food insecure areas. In 2009, there was drought in most parts of 
Ethiopia and Sudan due to the RF shortage during the crop-growing season, from July to September. The 
results of our analysis confirm this fact. 

Water and food shortage are long-term impacts of climate change and are of major concern to the 
world community these days. Our results could help decision makers to use advanced satellite technology 
for effective drought monitoring and early warning systems in various regions. Combined with proper 
policies, these systems can help to prevent famine and starvation in food-insecure regions. In the past, 
satellite technologies have been used primarily in areas of meteorological applications. In this research, 
the main emphasis is on mining knowledge for drought hazard assessment and saving the lives of 
individuals who are affected by recurring droughts. The findings of this research can assist decision 
makers in taking timely and appropriate actions to save lives in drought-affected areas using advanced 
satellite technology. 
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