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We study the demand forecast-sharing process between a buyer of customized production equipment and
a set of equipment suppliers. Based on a large data collection we undertook in the semiconductor equip-

ment supply chain, we empirically investigate the relationship between the buyer’s forecasting behavior and
the supplier’s delivery performance. The buyer’s forecasting behavior is characterized by the frequency and
magnitude of forecast revisions it requests (forecast volatility) as well as by the fraction of orders that were
forecasted but never actually purchased (forecast inflation). The supplier’s delivery performance is measured
by its ability to meet delivery dates requested by the customers. Based on a duration analysis, we are able to
show that suppliers penalize buyers for unreliable forecasts by providing lower service levels. Vice versa, we
also show that buyers penalize suppliers that have a history of poor service by providing them with overly
inflated forecasts.
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1. Introduction
Sharing demand forecast information has been recog-
nized as a key element in supply chain coordination
(Cachon 2001). Over the last decade, companies have
engaged in various forecast-sharing practices, includ-
ing the commonly known Collaborative Planning,
Forecasting and Replenishment (CPFR) initiative,
which was launched to “create collaborative relation-
ships between buyers and sellers through coman-
aged processes and shared information.”1 Retailers
such as Wal-mart and Best Buy, along with suppliers
such as Procter & Gamble and Kimberly-Clark, have
all reported substantial benefits from CPFR projects.
For example, GlobalNetXchange, a consortium con-
sisting of more than 30 trade partners including Sears,
Kroger, Unilever, Procter & Gamble, and Kimberly-
Clark, have reported a 5%–20% reduction in inventory
costs and an increase in off-the-shelf availability of

Authors are named in reverse alphabetical order. All authors con-
tributed equally.
1 Website: http://www.cpfr.org.

2%–12% following the launch of their CPFR program
(VICS CPFR Committee 2002).
Despite these success stories, forecast sharing still

suffers from several problems in practice. In this arti-
cle, we analyze two types of problems related to
forecast sharing. First, forecasts change and are con-
tinually updated as the buyer receives new informa-
tion about the demand it faces. This problem, which
we refer to as forecast volatility, raises the question of
when the forecast information provided by the buyer
is sufficiently accurate to justify the supplier acting
on it. A supplier that will act immediately on any
given forecast will likely face significant future adjust-
ment and rework costs.
Second, forecasts provide information about what

the buyer intends to do in a given future state of the
world. These intentions, however, are not verifiable
and cannot be enforced. This makes contracting based
on shared forecasts extremely difficult. In the absence
of a contractual obligation for the buyer to purchase
what it has forecasted, the buyer has an incentive to
inflate forecasts to assure sufficient supply (forecast
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Figure 1 Forecast Sharing and the Prisoner Dilemma
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inflation; see, e.g., Cachon and Lariviere 2001). Fearing
inflated forecasts, the supplier might prefer to delay
its actions to a point in time when the buyer is willing
to commit to its forecast. This setup shares many sim-
ilarities with the classical prisoner’s dilemma: As is
illustrated by Figure 1, both parties can either coop-
erate (buyer shares forecasts truthfully, and supplier
trusts the forecast), achieving the Pareto-optimal out-
come, or, as predicted by the one-period equilibrium
model, they can decide to act noncooperatively (buyer
inflates forecasts; supplier discounts forecast), forego-
ing the benefits of forecast sharing (shaded cell in
Figure 1).
The extent to which the two parties will choose

cooperative actions depends on the relevant planning
horizon. Most of the existing analytical research on
supply chain contracting considers one-shot games
(Cachon and Netessine 2003). As demonstrated earlier
(Cohen et al. 2003), this single period game induces
the buyer to overforecast and the supplier to delay the
initiation of a production order. More recently, there
has been a growing interest in the supply chain litera-
ture (Taylor and Plambeck 2003, Debo 1999, Ren et al.
2004) and beyond (see, e.g., Sommer and Loch 2003
for an application in project management) in the role
of trust and reputation in multiperiod games. This
study complements this emerging area of research
with an empirical foundation. Taking a multiperiod
perspective, we demonstrate that both parties con-
sider the outcome of previous periods when deciding
whether they should cooperate in the present period.
Our study is grounded on detailed data related to

forecast sharing and order fulfillment collected in the
semiconductor equipment supply chain. We created
a unique proprietary data set, capturing transactions
between one buyer and 78 suppliers. Over a period of
2 years we collected data on more than 3,000 orders.
This allows us to make the following contributions.
First, we show that suppliers in the semiconductor
equipment supply chain penalize the buyer for unreli-
able forecasts by delaying the fulfillment of forecasted
orders. Specifically, we show that suppliers that have
experienced large amounts of forecast volatility from
the buyer are less willing to allocate capacity toward

forecasted orders, leading to overproportionally long
tool delivery times. Second, we show that suppli-
ers that have been exposed to forecast inflation in
the form of excessive order cancellations are less
willing to allocate capacity toward forecasted orders,
also leading to overproportionally long tool delivery
times. Third, we show that the buyer penalizes those
suppliers that have not been able to meet prior deliv-
ery requests by providing them with overly inflated
forecasts. Together with the actions of the supplier,
this penalty scheme from the buyer creates a “tit-for-
tat” strategy, which is in line with earlier predictions
from the economics literature for repeated prisoner
dilemma games (e.g., Axelrod 1981, Kreps et al. 1982).

2. Research Setting
Our empirical analysis is based on a proprietary data
set that we created in the semiconductor equipment
industry. The data set consists of one buyer and a
set of 78 suppliers. The buyer in our sample is one
of the largest chip manufacturers in the industry and
is the most important buyer of semiconductor equip-
ment worldwide. This gives the buyer a substantial
amount of power and allows it to implement forecast-
sharing agreements that equipment suppliers might
not agree to when dealing with smaller equipment
buyers. This includes contracts design, information
systems implementation, and requests for short deliv-
ery lead times. Given the technological complexity
of the pieces of equipment requested by the buyer
and the large amount of buyer-specific investments
that suppliers incur, there exists only one supplier for
every piece of equipment (i.e., for any piece of equip-
ment, the buyer is committed to a single-sourcing
strategy). While the powerful position of the buyer
clearly limits the generalizability of our findings, it
is advantageous from a research design perspective,
as it holds the forecast-sharing mechanism constant
across all 78 suppliers in our sample.
As in many customized capital goods industries,

the semiconductor equipment supply chain faces an
order-fulfillment dilemma. On the one hand, buyers
of equipment expect their suppliers to be responsive
and to be able to fulfill orders within a relatively short
time. On the other hand, the high value and the cus-
tomized nature of the product make it risky for the
supplier to keep finished products or subsystems in
inventory, leading to long and variable manufactur-
ing lead times. Given the integral nature of the equip-
ment, postponement strategies that have been found
useful to shorten delivery times and to reduce inven-
tory risks (e.g., Lee 1996) have not yet been imple-
mented in this industry.
To resolve this dilemma, the buyers (producers of

microchips) provide their equipment suppliers with
order forecasts for 24 months and longer. Unlike
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Figure 2 Changes in Spending Levels in the Semiconductor Industry
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firm purchase orders, such forecasted orders—also
referred to as “soft orders”—are a reflection of the
buyer’s purchase intent and are not legally binding.
Demand for semiconductor production equipment

is triggered by the (projected) demand for chips,
including microprocessors and memory chips. Given
that the demand for chips is in turn generated by the
demand for electronic devices, semiconductor equip-
ment makers find themselves at the wrong end of
the “bullwhip” (e.g., Lee et al. 1997). They face busi-
ness cycles that flood them with orders one year
and starve them for work the next (see Figure 2).
The large chip producers create market forecasts on a
monthly or quarterly basis. These forecasts are used
to project production capacity needs for the next
2–5 years. Forecasts and capacity plans are updated
on the basis of a rolling horizon principle. Chip man-
ufacturers use these product-level demand forecasts,
combined with equipment output models, to forecast
capacity requirements to both existing and potentially
new fabs. If the forecasted capacity requirement is
not supported by the size and productivity of the
installed equipment base, additional equipment must
be ordered. This projected need for additional equip-
ment is shared with equipment suppliers in the form
of forecasted (soft) orders, consistent with the princi-
ple of forecast sharing and collaborative planning.
The chip manufacturer is unlikely to actually com-

mit to purchase equipment at the time of the initial
soft order placement. Over the next two years, the
chip manufacturer will obtain new information about
demand for chips as well as about the effective capac-
ity of the currently installed equipment base (based
on production yields, throughput time, and machine
up time). As a result, the chip manufacturer may
update the soft order and will usually delay mak-
ing a firm order (i.e., issue a purchase order) until
3–6 months prior to the projected delivery date. This
flexibility of the buyer, which delays a commitment
until relatively close to the delivery date, reflects the
buyer’s strong bargaining position.
During the time between the initial placement of

the soft order and the final placement of the purchase

order, the buyer and the supplier continue to exchange
information. Specifically, the buyer will inform the
supplier about changes to the requested delivery date,
the location of the fab where the tool will be operat-
ing, and other delivery-related information. In con-
trast to these delivery detail changes, the buyer does
not change the specification of the equipment. This
reflects the buyer’s policy known as “copy exact”
(see Terwiesch and Xu 2004 for details), which pos-
tulates that every piece of production equipment has
to be absolutely identical. In the absence of specifi-
cation changes, a soft order can be modified in one
of the following two ways: (1) The requested deliv-
ery date might be moved forward or backward in
time, reflecting new information the buyer has about
detailed capacity planning at the fab. Given the high
capital costs associated with acquiring the equipment,
the buyer prefers to delay the requested delivery date
rather than receive the equipment earlier than needed
and having it be idle. (2) The soft order may be can-
celled if market demand is less than initially projected
or if existing equipment operates at higher yield levels
or at a higher level of productivity. Alternatively, the
soft order remains unchanged in the forecast-sharing
system. Figure 3 shows the sequence of events for
a soft order that is ultimately converted into a firm
order.
Table 1 shows an example of four soft orders rep-

resentative of the type of data we collected. This
includes when the soft order was placed, how the
requested delivery date changed, and whether the
soft order ended up being purchased or being can-
celled. Tool #197 has a stable forecast history but
was cancelled six months after it was forecast. The
requested delivery date for tool #199 changed three
times. Tool #316 has a relatively stable forecasting
history and was delivered earlier than requested. In
contrast, tool #365 has a volatile forecasting history,
with its requested delivery date changing widely from
as early as 8/16/2000 to as late as 12/30/2000. This
order ultimately was delivered almost 2 months later
than requested.
Figure 4 shows an aggregation of order forecasts for

one specific supplier. Each of the shared forecasts is a

Figure 3 Events Leading to a Firm Order and Tool Delivery
(Noncancellation Case)
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Figure 4 Forecasted (Soft) Orders vs. Actual Orders
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time series consisting of the seven quarters included in
the relevant forecast window. For example, in Q2 2000,
the buyer provides forecast quantities for the time
interval fromQ3 2000 to Q1 2002. We observe that fore-
casts vary widely, both over time (what is forecast in
Q1 2000 for the period of Q2 2000 to Q4 2001) as well
as from one forecast to the next (e.g., what is forecast
in Q4 1998 for Q2 1999 vs. what is forecast in Q1 1999
for Q2 1999). Figure 4 also contrasts the forecasts with
the actual tool purchases. On average, the buyer places
significantly more soft orders than hard orders, sug-
gesting the use of forecast inflation.

3. Research Objectives and
Hypotheses

Our objective was to identify patterns of shared order
forecasting that lead to an on-time tool delivery. Given
that when a purchase order is placed, its produc-
tion lead time exceeds the residual time available to
the requested delivery date (see Figure 3), an on-time
delivery requires that the supplier start working on an
order while it was still a forecast (soft order).
Unfortunately, the effectiveness of working with

forecast orders can be greatly reduced through nonco-
operative behavior of either party, buyer or supplier.
The buyer can place more soft orders than it antici-
pates purchasing in the hope that this will secure him
production capacity of the supplier. Vice versa, the
supplier can discount or even ignore the information
provided in the form of a soft order, knowing that
it is the single supplier for a specific tool and that it
would be legally almost impossible to hold it account-
able for a delay. Consequently, the single period game
between the buyer and the supplier resembles the
traditional “prisoner’s dilemma,” which is known to
have a Pareto inefficient equilibrium (Figure 1).

While playing a game once can lead to mistrust and
a noncooperative outcome, the economics literature
suggests that playing a game repeatedly can lead to
more cooperative outcomes. Specifically, it has been
argued that in the repeated game, parties are likely
to adopt a “tit-for-tat” strategy, that is, cooperate
(the buyer forecasts orders correctly on average and
the supplier reacts to the forecast order) as long as
the other party does the same and retaliate (the buyer
overforecasts and the supplier ignores forecast orders)
upon the other party’s defection (Axelrod 1981, Kreps
et al. 1982). The hypotheses derived below attempt to
document that the buyer and supplier indeed follow
such a “tit-for-tat” strategy.

The Supplier’s Perspective
Consider the perspective of the supplier first. Given
that the buyer has the right to change the deliv-
ery dates of soft orders and can cancel any open
soft order, the supplier carries the risk of commenc-
ing production prior to receiving a firm order. How-
ever, since the supplier depends on the buyer for
business for future technology generations, the sup-
plier is unlikely to completely discount every piece
of information he receives from the buyer. Instead,
the supplier will evaluate the reputation of the buyer
based on prior transactions, rewarding good fore-
casting behavior with early commencement of the
production process and penalizing bad forecasting
behavior with delays.
In our context, a buyer’s bad forecasting behavior

is constituted by two forces, forecast volatility and
forecast inflation. Forecast volatility arises as fore-
cast orders are based on preliminary information and
made at a point in time that the buyer still faces



Terwiesch et al.: Forecast Sharing in the Semiconductor Equipment Supply Chain
Management Science 51(2), pp. 208–220, © 2005 INFORMS 213

substantial uncertainty about actual needs for the
equipment. This uncertainty is likely to make the
forecasts volatile, which in turn makes the supplier
reluctant to commit resources to it. Forecast volatility
has been analyzed by several prior studies (Heath and
Jackson 1994, Graves et al. 1998, Cakanyildirim and
Roundy 2002, and Kaminsky and Swaminathan 2001).
Cattani and Hausman (2000) show that demand fore-
casts do not necessarily become more accurate as they
are updated. They argue that such forecast churning
can cause inefficiencies if the firm reacts to the wrong
forecast update. A similar result has been provided
by Toktay and Wein (2001). Similar observations have
also been made in the coordination and project man-
agement literature.2

In our research setting, forecast volatility can take
one of two forms: order-specific forecast volatility or
buyer-specific forecast volatility. With order-specific
volatility, we refer to the number of change requests
the buyer places for a particular order.3 In con-
trast, we label the number of change requests (across
orders) the buyer has placed with the supplier as
buyer-specific forecast volatility.4 Buyer-specific fore-
cast volatility thereby captures the recent history of
forecast behavior of the buyer.

Hypothesis 1a (Order-Specific Forecast Volati-
lity). The more the customer changes the requested deliv-
ery date of a particular soft order, the more likely this
particular order will be delayed.

Hypothesis 1b (Buyer-Specific Forecast Volatil-
ity). The more the buyer has changed requested delivery
dates for soft orders in the past, the more likely it is that
the current order will be delayed.

A second reason why a supplier might not be will-
ing to initiate work for a soft order relates to the
perceived probability of order cancellation. Given the
complex and capital-intense production process of
semiconductor manufacturing, the buyer faces severe
costs if the equipment does not arrive on the required
delivery date. Late shipments of equipment—and

2 See Krishnan et al. (1997), Loch and Terwiesch (1998), and Roe-
mer et al. (2000) for models of sharing preliminary information
in which the manager of an information-receiving task needs to
decide when it is willing to commit resources to information sup-
plied by other, concurrently executed, tasks.
3 Consider, for example, a supplier in February 2001 that received
a soft order in May 2000 with an initially requested delivery date
of July 2001. However, between May 2000 and February 2001, the
soft order has been modified (e.g., pushed out) multiple times.
4 Consider, again, a supplier that has received a soft order in
May 2000 with a requested delivery date of July 2001. In January
2001, the supplier considers initiating the order-fulfillment pro-
cess. Yet, from prior experience with the same buyer, the supplier
knows that in more than half of the cases the buyer has delayed
the requested delivery date up to five months from the initially
requested delivery date.

consequently late availability of capacity—can lead to
idle time for other equipment in the fab and poten-
tially lost wafer output. Industry observers estimate
that a 1-hour delay in installing capacity of a fab is
worth in excess of $100,000. This creates an incentive
for the buyer to provide overly aggressive forecasts to
the supplier, that is, place more soft orders than firm
orders. As the real capacity needs of the buyer are
unobservable to the supplier, the buyer can always
cancel the order and justify such change on informa-
tion that is not verifiable by the supplier, for example,
an unexpected drop in demand or increased produc-
tion yields from existing equipment. Note that, in con-
trast to forecast volatility, which would also exist in a
vertically integrated firm, forecast inflation reflects an
opportunistic (noncooperative) behavior of the buyer.
Forecast inflation has been analyzed by Lee et al.

(1997), Celikbas et al. (1999), and Cachon and
Lariviere (2001). While these models are based on
one-shot games, there has been a growing interest in
the role of trust and reputation in supply chains from
a multiperiod perspective (Taylor and Plambeck 2003,
Debo 1999, Ren et al. 2004, Cachon and Netessine
2003). These studies, directly or indirectly, fit the
repeated prisoner’s dilemma framework outlined in
Figure 1 and hence predict that the supplier will
penalize the buyer for order cancellations by provid-
ing longer delivery times.

Hypothesis 1c (Forecast Inflation). Past soft-order
cancellations prolong current order lead time. That is,
the more frequently the buyer has cancelled soft orders
in the past, the more likely it is for the supplier to delay
production, which leads to longer order lead time.

Cancelled orders are especially costly to the sup-
plier while operating at full capacity, as in such cases
the cancellation costs include not only costs of inven-
tory and procurement, but also the cost of lost busi-
ness. We therefore extend our hypothesis as follows:

Hypothesis 1d (Forecast Inflation in Economic
Upturn). The delay from order cancellation is more severe
during an economic upturn.

The Buyer’s Perspective
While cooperation from the supplier’s perspective
means reacting to the forecasted orders provided by
the buyer, cooperation from the buyer’s perspective
means providing realistic estimates for the forecasted
orders. To the extent that buyer and supplier indeed
follow a tit-for-tat strategy, the buyer will react to non-
cooperative behavior of the supplier by acting nonco-
operatively itself.
In the buyer’s eyes, noncooperative supplier behav-

ior is characterized by late deliveries of equipment.
Although the action of the supplier itself is not
observable to the buyer, the buyer can estimate sup-
plier cooperation based on delivery dates; everything
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else being equal, a supplier with late equipment deliv-
eries is more likely to have engaged in noncooperative
behavior than a supplier that has delivered on time.
Once the buyer has decided to punish a supplier,

it can do so by placing soft orders and then can-
celling them overproportionally often compared to
the case of cooperation. In absence of forced compli-
ance (Cachon and Lariviere 2001), this is the only pun-
ishment mechanism available to the buyer during the
interaction with the supplier for this tool generation.
We therefore hypothesize—

Hypothesis 2 (Forecast Inflation). Past delivery
delays lead to an increase in future cancellations.

4. Model Specification
We model the evolution of a soft order to a firm order
and ultimately to a delivered piece of equipment in
the form of a two-stage process. The first stage cap-
tures the fact that soft orders can either end up as
firm orders, that is, the buyer places an order, or be
cancelled. A firm order will see a delivery time that
consists of the elapsed time between the placement of
the firm order and its arrival at the customer’s fab.
These two stages are summarized by Figure 5.
Let �s� j� denote the index of the jth soft order the

buyer places with supplier s. We use a logit formula-
tion to describe the probability that this soft order is
transformed into a firm order:

Prs� j �firm order�= 1
1+ exp�xs� j��

� (1)

where xs� j is a vector of explanatory variables and
� is a parameter vector of appropriate dimensionality.
Since any soft order will either be transformed into a
firm order or be cancelled, the probability of cancel-
lation is

Prs� j �cancel� = 1−Prs� j �firm order�

= exp�xs� j��

1+ exp�xs� j��
� (2)

On placement, a firm order will experience a strictly
positive delivery lead time. We model the duration
between the buyer’s placing a firm order and its

Figure 5 Two-Step Model

Soft order Firm order

Ysi =0

Ysi =1

Cancelled
order

Tool
delivery

Stage 1: Cancellation
process (Logit model)

Stage 2: Delivery
process (Duration analysis)

delivery by the supplier using a hazard rate model
(Cox 1972). Using the hazard rate as a dependent
variable rather than the actual delivery lead time
has several advantages. First, durations may have a
nonnormal distribution. Restricted to being positive,
they are often skewed. Thus the normality assump-
tion of standard regression is violated. Second, haz-
ard rate models should be chosen instead of standard
regression analysis when working with survival data
(Helsen and Schmittlein 1993). In our case, perform-
ing a regression analysis on only those soft orders that
have been delivered would lead to a right-censoring
of the data, as many of the soft orders we traced were
not yet delivered at the end of our data collection.
Finally, hazard models are also capable of capturing
interesting dynamics of durations, such as the change
in hazard rate over time, which can lead to additional
insights in the underlying dynamics of the order ful-
fillment process.
Despite their advantages, standard hazard rate

models require that observations be independent of
each other. This may be reasonable in the context
of a medical lifetime study, yet in a manufacturing
environment like the one we study, the lead time of
one order is likely to be positively correlated with
the lead time of the subsequent order at the same
supplier. Such correlation reflects congestion effects:
A long lead time for one particular order will increase
the probability of the next order in the production
pipeline also experiencing a long lead time. Conse-
quently, the independence assumption is violated and
a refined model specification is needed.
Let �s� i� denote the index of the ith firm order at

supplier s, and let Is be the number of firm orders
received by supplier s. Define random variables Ts� i
as the logarithm of the duration between the place-
ment of the firm order �s� i� and the delivery date
of the equipment. Let ts� i be the realizations of these
random variables. In our estimation, we assume that
the congestion at the supplier can be captured via a
first-order correlation between lead times for this sup-
plier: Two orders close together (or with overlapping
lead times) will be more tightly correlated than two
orders that are far apart in time. Specifically, define
the hazard rate of one completed order �s� i� con-
ditional upon the completion time of the preceding
order to the same supplier (i.e., the order that the sup-
plier received directly before order i), �s� i− 1�, as

h�ts� i � ts� i−1�= h0�ts� i � ts� i−1� · exp�zs� i��� (3)

where h0�ts� i � ts� i−1� is the correlated baseline hazard
function, zs� i is a vector of explanatory variables, and
� is a parameter vector of appropriate dimensionality.
According to Cox (1972), the baseline hazard func-
tion is

h0�ts� i � ts� i−1�=
f �ts� i � ts� i−1�

1− F �ts� i � ts� i−1�
� (4)
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where f �ts� i � ts� i−1� (F �ts� i � ts� i−1�) is the conditional
normal density (distribution) function for the ith
order at supplier s, given that the lead time of the pre-
ceding order to the same supplier (i.e., order s� i− 1)
is ts� i−1. Given identical marginal means � and stan-
dard deviations � , as well as a correlation coefficient �
for the unconditional bivariate normal distribution, it
follows that Ts� i � �Ts� i−1 = ts� i−1�∼N��+��ts� i−1−��,
�2�1−�2��. In order to formally test to what extent the
log-normal distribution indeed represents the deliv-
ery durations in our sample, we performed both
a Kolmogorov-Smirnov test as well as a traditional
Chi square test (see Law and Kelton 1991 for details).
Both tests supported our assumption—that is, the
hypothesis of log-normality could not be rejected.
The importance of the correlation coefficient, �, will
become apparent in the estimation results of our
model.
Define an indicator variable rs� i = 0 if the dura-

tion is censored (i.e., the firm order was not com-
pleted at the time of our data collection), and rs� i = 1
if it is not censored. Then the likelihood contribution,
that is, the probability of observing duration ts� i con-
ditional upon it being firm ordered, is (Kalbfleisch
and Prentice 1980):

Pr�ts� i � ts� i−1�= �f �ts� i � ts� i−1��rs� i �1− F �ts� i � ts� i−1��1−rs� i �

Given our assumption of first-order correlation, we
can write the likelihood contribution of observing the
vector (ts�1� � � � � ts� Is � of delivery times at supplier s as

Prs�ts�1� � � � � ts� Is �

= Pr�ts�1� ·Pr�ts�2 � ts�1� · · · · ·Pr�ts� Is � ts� Is−1�� (5)

Finally, we obtain the log-likelihood function of the
complete two-stage model:

LL�����������

=∑
s

{[∑
j

ln�Prs� j �firm order��+ ln�Prs� j �cancel��
]

+ ln�Prs�ts�1� � � � � ts� Is ��
}

(6)

5. Construct Definition
Over the period from September 1999 to July 2001 we
collected data on all soft and firm orders the buyer
placed with his 78 equipment suppliers, leading to
a total of 3031 observations. The econometric model
specified above uses two dependent variables. For the
first stage, the dependent variable is binary, with a
value of 1 denoting that the soft order was converted
into a firm order and a value of 0 denoting a cancella-
tion. In total, 53.2% of the soft orders were converted
into firm orders. For the second stage, the dependent
variable is the duration between the placement of the
firm order and the delivery of the equipment to the

buyer’s fab.
In addition to these dependent variables, our

hypotheses include the following set of explanatory
variables. For a given soft order, we measured order-
specific volatility (ORDER_VOLA) as the amount of
due date change (forward or backward in time) that
this soft order has experienced prior to becoming a
firm order. In other words, we added up the abso-
lute value of all due date changes this soft order
experienced. For example, a soft order that was ini-
tially placed for May 2002, moved forward to March
2002, and finally moved back to June 2002 would
have a score of 2+ 3 = 5 months. Similarly, we mea-
sured buyer-specific volatility (BUYER_VOLA) for
a given soft order as the average amount of due
date change (forward or backward in time) across
all soft orders the buyer submitted to the supplier
within the last three months prior to this soft order.
Both, BUYER_VOLA and ORDER_VOLA, are mea-
sured in months. BUYER_VOLA ranged between 0
and 16.4 months, with an average of 3.76 months.
In our data set, ORDER_VOLA ranged from 0 to
51.2 months. The average was—coincidentally—also
3.76 months. Forecast inflation was measured by com-
paring the number of soft order cancellations over the
past three months to the total number of (soft and
firm) orders. The corresponding ratio, which we label
as CANCEL, can be interpreted as the probability of
order cancellation.
We measured the overall economic conditions by

including the industry’s book-to-bill ratio, as defined
and tracked by Semiconductor Equipment and Mate-
rials International. It is defined as a ratio of the
three-month moving average bookings to the three-
month moving average shipments for the North
American semiconductor equipment industry. This
statistic characterizes the relative balance of supply
and demand in the industry. If the ratio is larger
than 1, demand exceeds current supply. We defined a
binary variable, BOOK_BILL, that was equal to 1
if demand exceeds supply (indicating an economic
upturn) and 0 otherwise. Finally, we measured the
past delivery performance of the supplier for a given
soft order as the total delay across all tool deliveries
that occurred within the last six months of this soft
order. The mean value of this variable, which we label
as PAST_LATE, was 0.14 month.
In addition to the variables relating directly to our

hypotheses, we included several control variables in
our analysis. First, we included a binary variable
DEV_FAB to indicate if the corresponding tool was
requested by a development fab. Development fabs
play a crucial role in the development of new equip-
ment technologies and thereby order tools only at the
very beginning of the tool’s product lifecycle. About
19% of the tools in our sample were ordered for a
development fab. We expected tools for development
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fabs to take longer compared to tools shipped to high
volume manufacturing facilities.
A second tool characteristic reflected differences

between the traditional 8-inch wafer technology
and the new 12-inch technology. A binary variable
NEW_TECH was set equal to 1 if the correspond-
ing tool was based on 12-inch technology. Since mid
1999, fabs have been gradually shifting toward using
wafers of 12-inch diameter, which leads to a much
higher number of chips on a wafer and consequently
improved productivity. Roughly 10% of tool orders
in our sample were for the new 12-inch technology.
Tools for the 12-inch technology were expected to
require longer lead times compared to tools based on
6- or 8-inch technologies.
Third, we used the variable TOOL_PRICE to reflect

the price of the tool as stated in the contract between
buyer and supplier. Prices for tools in our sample
averaged around $1.4 million but in some cases went
as high as $10 million per tool. We expected expen-
sive tools to have longer lead times, reflecting that
expensive tools are typically based on more complex
technologies. Fourth, we defined a binary variable
FOREIGN indicating if a tool was requested for a
non-US fab. Production in these fabs, all of which are
owned by the buyer, was managed locally and our
interviews suggested differences between the behav-
ior of fabs in the United States and abroad. About
16% of the tools were for non-US fabs.

Table 2 Estimation Results

Model parameters Model 1 Model 2 Model 3 Model 4 Model 5

� Constant −0�001 (0.0001) −0�001 (0.0001) −0�001 (0.0001) −0�001 (0.0001) −0�020 (0.0001)
DEV_FAB −1�387 (0.0009) −1�387 (0.0009) −1�387 (0.0009) −1�387 (0.0009) −1�389 (0.0002)
FOREIGN 0.6829 (0.0004) 0.6829 (0.0004) 0.6829 (0.0004) 0.6829 (0.0004) 0.8224 (0.0003)
TOOL_PRICE 0.0857 (0.0001) 0.0857 (0.0001) 0.0857 (0.0001) 0.0857 (0.0001) 0.0934 (0.0003)
CONVERTED −0�5290 (0.0002) −0�5290 (0.0002) −0�5290 (0.0002) −0�5290 (0.0002) −0�5686 (0.0003)
NEW_TECH 0.5442 (0.0018) 0.5442 (0.0018) 0.5442 (0.0018) 0.5442 (0.0018) 0.5238 (0.0002)
BOOK_BILL −0�009 (0.0002) −0�009 (0.0002) −0�009 (0.0002) −0�009 (0.0002) −0�019 (0.0001)
PAST_LATE 0.190 (0.0003)

� Constant 1.043 (0.0034) 1.317 (0.0041) 1.360 (0.0036) 1.329 (0.0042) 1.329 (0.0042)
DEV_FAB −0�075 (0.0022) −0�155 (0.0025) −0�117 (0.0030) −0�138 (0.0031) −0�138 (0.0031)
FOREIGN 0.456 (0.0015) 0.415 (0.0041) 0.422 (0.0041) 0.403 (0.0041) 0.403 (0.0041)
TOOL_PRICE −0�109 (0.0006) −0�103 (0.0006) −0�091 (0.0006) −0�093 (0.0006) −0�093 (0.0006)
CONVERTED 0.299 (0.0029) 0.246 (0.0031) 0.325 (0.0032) 0.324 (0.0043) 0.324 (0.0043)
NEW_TECH −0�369 (0.0013) −0�413 (0.0015) −0�347 (0.0041) −0�335 (0.0043) −0�335 (0.0043)
BOOK_BILL −0�147 (0.0004) −0�200 (0.0021) −0�212 (0.0022) −0�070 (0.0004) −0�070 (0.0004)
REQ_LEADT −0�127 (0.0021) −0�145 (0.0004) −0�146 (0.0028) −0�147 (0.0027) −0�147 (0.0027)
CANCEL −1�022 (0.0144) −0�491 (0.0153) −0�491 (0.0153)
CANCEL ∗BOOK_BILL −2�347 (0.0304) −2�347 (0.0304)
BUYER_VOLA −0�036 (0.0006) −0�032 (0.0006) −0�031 (0.0005) −0�031 (0.0005)
ORDER_VOLA −0�026 (0.0003) −0�031 (0.0003) −0�029 (0.0003) −0�029 (0.0003)

� 1.682 (0.0005) 1.718 (0.0012) 1.718 (0.0013) 1.722 (0.0013) 1.722 (0.0013)
� 0.172 (0.0005) 0.172 (0.0047) 0.167 (0.0044) 0.167 (0.0006) 0.167 (0.0006)

LL (In sample) −2�825�808 −2�817�200 −2�814�833 −2�812�167 −2�807�576

LL (Out of sample) −2�682�620 −2�678�003 −2�674�764 −2�668�180 −2�659�400

Fifth, about 8.5% of the tools in our sample were
reused tools, that is, tools that were initially built
based on an older technology and then upgraded
to be usable for the latest process technologies.
Such upgrades, also referred to as converted tools,
require that the tool’s critical components be replaced.
A binary variable CONVERTED is equal to 1 if the
tool has been converted at least once. Converted tools
are expected to have shorter lead times.
Sixth, and finally, we needed to control for the lead

time requested by the buyer when writing a purchase
order to the supplier (REQ_LEADT). The fact that a
tool with a long requested lead time takes longer until
it is delivered had nothing to do with our research
focus on forecast sharing. It is the deviation from this
requested lead time that was of interest to us. The
average requested lead time was about 5 months.

6. Estimation Results
To test our hypotheses, we specified and estimated
a sequence of five models. The specifications as well
as the parameter estimates are reported in Table 2.
Model 1 contains a constant and the control variables
DEV_FAB, FOREIGN, TOOL_PRICE, CONVERTED,
NEW_TECH, and BOOK_BILL, and—for the duration
analysis only—the requested lead time REQ_LEADT.
The effect of the control variables are as predicted.
All models indicate that the correlation coefficient

between subsequent orders to the same supplier is
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significant and positive. The actual estimates range
between � = 0�167 and � = 0�172. This significant
correlation captures the effect of congestion in the
buyer’s production facility: If the nth order from a
given supplier is experiencing a longer-than-average
lead time, chances are that the �n + 1�st order will
also be delayed. Thus, our extension of the tradi-
tional duration analysis to include first-order correla-
tion was indeed necessary.
Consider Hypothesis 1a (Order-Specific Forecast

Volatility) and Hypothesis 1b (Supplier-Specific Fore-
cast Volatility) first. As shown by Model 2, forecast
volatility indeed leads to longer delivery duration, as
indicated by the negative coefficient of BUYER_VOLA
and ORDER_VOLA. Moreover, comparing the log-
likelihood of Model 2 to that of Model 1, we find
that adding these variables improves the explanatory
power of the model. This is indicated by the signifi-
cant likelihood ratio test as reported in Table 3.
Interestingly, we observe that BUYER_VOLA’s

impact (ranging from −0�031 to −0�036) is stronger
than that of ORDER_VOLA (ranging from −0�026 to
−0�031), which suggests that the long-run effect of
supplier reputation is more profound than the short-
term effect of changing a single order. Based on the
relationship between the hazard rate and the expected
lead time, we obtain the marginal effect on lead time
of an increase of BUYER_VOLA. Each month of deliv-
ery date change results in an average of 0.25 month
of additional delay. Thus, for every month the buyer
changes the requested delivery date of an order, it
will experience a 0.25-month increase in expected lead
time. A one-month increase in the average change
in requested delivery date will lead to a 0.16-month
increase in expected lead time.
Model 3 indicates that an increase in cancellation

(CANCEL) will lead to a significant decrease in the
hazard rate, which is in line with Hypothesis 1c.
Moreover, as shown by Model 4, the business cycle, as
indicated by the book-to-bill ratio (BOOK_BILL), has
a strong interaction effect with the forecast inflation
measure CANCEL, confirming Hypothesis 1d. During
a business upturn (BOOK_BILL = 1), the delaying
effect of CANCEL increases drastically (from −0�491%
to −2�838% in elasticity across models). This confirms
our hypothesis that cancellations prolong delivery
times more profoundly during an economic upturn.

Table 3 Likelihood Ratio Test

Model 1 Model 2 Model 3 Model 4 Model 5

LL −2�825�808 −2�817�200 −2�814�833 −2�812�167 −2�807�576
LR 17�216 4�734 5�332 9�182

(Model 2 vs. (Model 3 vs. (Model 4 vs. (Model 5 vs.
Model 1) Model 2) Model 3) Model 4)

d.f. 2 1 1 1
p value 0�000 0�030 0�021 0�002

Our results suggest an increasingly delaying impact
of CANCEL on the delivery time. Moreover, the
state of the economy, represented by the book-to-
bill ratio, aggravates such negative impact drastically.
The impact from each additional percentage increase
in CANCEL ranges from 7.6 days (CANCEL= 0%)
to 14.1 days (CANCEL = 45%) during an eco-
nomic downturn. The impact becomes substantially
more profound during an economic upturn, ranging
from a 19.5-day (CANCEL = 0%) delay to a delay
of 91.2 days (CANCEL= 45%). Thus, a 1 percentage
point increase in cancellation frequency leads to an
increase of 1.59 days in delivery duration.
Finally, Model 5 tests the hypothesized effect of

prior late shipments on the cancellation probability.
Based on the significant coefficient of PAST_LATE in
Model 5, we find also Hypothesis 2 supported. The
coefficient of 0.190 indicates that a one-week late-
ness in previous shipments will increase the likeli-
hood of future order cancellations by 19 percentage
points. This complements the tit-for-tat perspective
to the repeated buyer interaction discussed in the
Introduction.

7. Model Validation
To validate the robustness of our results with respect
to our construct definition, we used alternative
measures for buyer volatility (BUYER_VOLA) and
cancellation probability (CANCEL). In addition to
measuring these constructs based on the last three
months as defined above, we varied the “memory”
of these variables to six and nine months. Simi-
larly, for the past shipment delays from the supplier
(PAST_LATE), we used a time window of three and
nine months. All our findings reported in Table 2
remained structurally unchanged.
To validate the robustness of our results with

respect to our sample composition, we ran our anal-
ysis with and without the converted tools. Again, all
results of Table 2 remained structurally unchanged.
To test the validity of our logit model (first stage),

we calculated its ability to correctly predict if a soft
order would become a firm order as opposed to being
cancelled. Our logit model predicts more than 70% of
the binary outcomes correctly, which is in line with
previous applications of logit models.
To test the validity of our duration analysis (sec-

ond stage), we performed a May-Hosmer test. The
test is based on a comparison of the observed num-
ber of deliveries with the expected number of deliv-
eries as predicted by the duration analysis (see May
and Hosmer 1998). The test first requires calculat-
ing the estimated risk score z �� for each observa-
tion and then grouping the subjects into subgroups
indexed g = 1� � � � �G. For each subgroup, we compute
and compare the observed and the expected number
of uncensored deliveries. A large p-value (typically
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Table 4 May-Hosmer Test

Actual Expected z Score p Value

Decile of risk score
1 2 0�218 3�811 0.000
2 1 0�348 1�106 0.269
3 3 2�142 0�586 0.558
4 23 18�245 1�113 0.266
5 48 53�912 −0�805 0.421
6 177 169�569 0�571 0.568
7 545 575�146 −1�257 0.209
8 607 629�92 −0�913 0.361
9 259 249�264 0�617 0.537
10 51 30�188 3�788 0.000

greater than 10%) accepts the hypothesis that there is
no significant difference between the observed num-
ber of deliveries and the expected number of deliver-
ies and therefore indicates a good model prediction.
The test results are reported in Table 4.
We observe that our model performs well except

for the first and the last decile. The first decile is
not of significance because the corresponding sub-
group only contains two observations. The 10th decile
has 51 observed deliveries, compared to 31 predicted
deliveries. This is due to the fact that the risk score
subgroup contains observations with unusually large
risk scores, and our model fails to predict those out-
liers. For the other groups, which contain 96.5% of
the observations in our sample, the test results show
that our model predicts well, with p-values all greater
than 10%.
The overall model fit is visualized by plotting the

actual observed durations against the fitted durations
(Figure 6). Toward this end, we increase the number
of subgroups to 100. A perfect model fit would lead
to points lying on the 45-degree line in the graph.
The points obtained from our model are overall close
to the 45-degree line, indicating a good fit. This is
formalized by the following regression analysis:

Predicted=−0�28+ 0�94∗ ×Observed�
∗indicates significance at 0.1% level. R2 = 90�5%.
Despite this good fit, it should be emphasized that

our empirical findings might not directly generalize
to other supply chain settings. The strong buyer, the
fast-changing technology, and the complexity of the
orders clearly differentiate the semiconductor equip-
ment supply chain from many other industrial set-
tings. Empirical research in other industries is needed
to overcome this limited generalizability.

8. Conclusion
Forecast sharing has the potential to dramatically
improve supply chain performance. Yet, as demon-
strated by our research findings, a supply chain
might not be able to achieve the potential perfor-

Figure 6 Actual vs. Fitted Durations
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mance improvements from forecast sharing. From the
perspective of the supplier, the forces that prevent
effective forecast sharing are forecast volatility and
forecast inflation. Forecast volatility arises because
forecasts are based on preliminary information and
made at a point in time at which the equipment
buyer still faces substantial uncertainty about the
market demand for chips as well as of the capacity of
the currently installed production equipment. As the
buyer is exposed to additional information, it updates
its forecasts to the supplier. While always sharing
the latest information with the supply chain seems
like a reasonable behavior for the buyer, frequent
updates of information are perceived as disturbing
from the perspective of the supplier. As we showed
with respect to Hypothesis 1a, the supplier views a
soft order that has been changed already multiple
times as less reliable than a soft order that has not yet
been changed. Consequently, the supplier is not will-
ing to allocate production capacity to this soft order.
Hypothesis 1b demonstrates that frequent changes to
one soft order have externalities on how the supplier
views future soft orders. Specifically, the more a buyer
changes the requested delivery dates for equipment,
the more the supplier will wait for the forecasts to
stabilize when considering subsequent soft orders.
Forecast inflation can occur in the semiconductor

equipment supply chain, as the buyer has an incentive
to create overly aggressive forecasts. Forecast infla-
tion is facilitated in this setting because shared fore-
casts are not verifiable and thus the supplier will
never be able to validate whether actual inflation
occurred. However, as we demonstrate in conjunction
with Hypothesis 1c, frequent forecast inflation can
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hurt the buyer in the long run. This penalty for past
cancellations is especially severe during an economic
upturn, during which the supplier has many other
profitable opportunities to use its production capacity
(Hypothesis 1d).
As does the supplier, which penalizes the buyer

for inflated forecasts through longer delivery times,
the buyer provides more aggressive forecasts to those
suppliers that have failed to deliver previous orders
on time (Hypothesis 2). This follows the logic of
the repeated prisoner’s dilemma game and estab-
lishes that both buyer and supplier apply a tit-for-tat
strategy.
Our empirical research findings and our multi-

period framework of forecast sharing open up inter-
esting opportunities for future research. First, we
believe additional research is needed to analyze sup-
ply chain coordination in repeated game settings.
While repeated games have been extensively studied
in the economics literature, most of the contracting
research in operations management has taken a rather
static perspective, ignoring effects of trust building
and reputation.
Second, one needs to overcome the forecast volatil-

ity problem. Currently, forecasts provided by the
buyer do not acknowledge that they are based on pre-
liminary information and are likely to change. Thus,
while the buyer shares the expected outcome for a
particular equipment order in the form of a best
guess, it does not relay information reflecting possi-
ble alternative outcomes as well as the probabilities
that such alternative outcomes occur. The supplier
in turn perceives the almost unavoidable iterations
as an indication that the shared forecasts are of low
quality and consequently is not willing to commit
resources based on this information. Recent research
related to the information sharing in teams outlines
alternative approaches to this (Terwiesch et al. 2002),
including the concept of sharing information in the
form of sets, which are gradually narrowed over time,
rather than sharing information in the form of points,
which “jump around” in an unpredictable fashion. In
our setting, set-based information sharing could be
based on quantities (“We will order between 5 and
10 tools this year”) or requested delivery times (“We
need this soft order between June and December”).
Addressing some of the concerns related to trust and
reputation raised by the present study, the buyer ini-
tiated a fundamental redesign of the forecast-sharing
mechanism, which included providing information to
the suppliers about forecasted orders in the form of
intervals.
While new information technologies have enabled

firms involved in a supply chain to gain insight into
the planning processes of other firms, our findings

demonstrate that there remain substantial organiza-
tional barriers preventing firms from fully achiev-
ing the benefits of forecast sharing and collaborative
planning.
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