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Abstract

In many production scenarios, a fixed capacity is shared flexibly between multiple prod-

ucts. To manage such multi-product systems, firms need to make two sets of decisions. The

first one requires setting an inventory target for each product and the second decision requires

dynamically allocating the scarce capacity among the products. It is not known how to make

these decisions optimally. In this paper, we propose easily implementable policies that have

both theoretical and practical appeal. We first suggest simple and intuitive allocation rules

that determine how such scarce capacity is shared. Given such a rule, we calculate the optimal

inventory target for each product. We demonstrate analytically that our policies are optimal

under two asymptotic regimes represented by high service levels (i.e. high shortage costs) and

heavy traffic (i.e. tight capacity). We also demonstrate that our policies outperform current

known policies over a wide range of problem parameters. In particular, the cost savings from

our policies become more significant as the capacity gets more restrictive.

Keywords: Flexible Capacity, Multiple Products, Allocation Rules, Asymptotic Optimality.

1 Introduction

In many industries such as auto-manufacturing, semiconductors, consumer electronics and phar-

maceuticals, a firm’s ability to carefully manage its flexible capacity is often a significant factor

for its long-term success. Firms that are able to manage flexible capacity efficiently can operate

with smaller capacities to satisfy varying market demand across several products. The focus of this
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paper is to provide simple decision rules for managing flexibility efficiently - more specifically, rules

for determining how limited capacity can be dynamically allocated across several products.

To achieve our goal, we study a firm that produces multiple products in every period, using

a shared resource with limited capacity. We represent the firm’s decisions using a periodically

reviewed stochastic inventory model. Production occurs at the beginning of each period. A random

demand (for each product) occurs during the period. For all products, the unsatisfied demand at

the end of any period is backordered. Linear holding and shortage costs are assessed for all products

at the end of every period.

We explore the objective of minimizing the long-run average cost per period as the performance

measure. This optimization problem comprises of two sets of related decisions. The first one

involves setting the target level for each product, and the second requires an allocation rule that

determines how the scarce capacity is shared among the products. It is well known that performing

these two tasks optimally is difficult (more details on this difficulty in the next section). Therefore,

in this work, we propose implementable policies that have both theoretical and practical appeal.

Given the mathematical difficulty of analyzing our problem, we take an approach similar in spirit

to papers that study limiting regimes of such stochastic control problems. Limiting regimes yield

insights on the structure of optimal policies. Policies constructed using this structural insight are

then empirically shown to perform well in non-limiting regimes. In the same spirit, we first suggest

an intuitive class of allocation rules called weighted balancing rules. These rules are parametrized

by a weight for each product, and they determine how the scarce capacity in any period is shared

amongst multiple products. For every rule in this class, the optimal target level for each product

is obtained directly from an application of the newsvendor formula – we refer to the combination

of weighted balancing rules with these target levels as weighted balancing policies.

To provide theoretical validity to this class of policies, we study two different asymptotic regimes

represented by (i.) service levels approaching one (i.e., when shortages are prohibitively expensive),

and (ii.) utilization approaching one (i.e., when there is little slack between capacity and expected

aggregate demand). For each of these two regimes, we identify an allocation rule (i.e. a vector of

weights) within our class which is asymptotically optimal under certain assumptions. To investigate

how our class of policies performs, in general, we study a set of problems that span a wide range

of costs, demand variabilities and capacity utilizations, which are not in the asympototic regime.
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1.1 Our Approach

We focus on a class of policies called stationary base-stock policies, which we define below. There is

a target or base-stock level corresponding to each product. This target is constant, i.e., stationary

across periods. At the beginning of a period, let us assume that the inventory level of each product

will be at most equal to that product’s base-stock level. (It will be easy to see that our definition of

a stationary base-stock policy is such that this assumption is satisfied in every period if it is satisfied

in the first period). The difference between the inventory level and the base-stock level is called the

“opening shortfall”. If the aggregate shortfall of all products is smaller than the capacity limit, we

produce enough of each product to raise its inventory to its base-stock level. The resulting shortfall

(“ending shortfall”) is thus zero for every product. If the aggregate shortfall exceeds the capacity,

then the entire production capacity is used in such a way that the inventory level of each product

does not exceed its base-stock level. This concludes our definition of a stationary base-stock policy

which is known to be optimal for the two-product case, albeit, under the finite horizon (Evans,

1967).

We note that, in our discussion of stationary base-stock policies, we have not described how the

capacity is allocated to the different products in any period in which capacity is insufficient (scarce)

for all products to reach their base-stock levels. We refer to such a description as an allocation rule.

Clearly, even if we restrict our attention to the class of stationary base-stock policies, calculating

the exact base-stock levels in an optimal policy within this class entails an understanding of the

optimal allocation rule in periods when capacity is scarce. Thus, even within this class, the optimal

policy involves two interdependent sets of decisions, namely, base-stock levels (production policy)

and an allocation rule. The lack of knowledge of the structure of the optimal allocation rule is thus

the main stumbling block. To resolve this difficulty, we suggest and work with a set of policies that

decouple the base-stock and allocation decisions.

The class of policies we advocate is the following. For any given vector of base-stock levels, we

raise all inventory levels to the base-stock levels whenever it is feasible to do so. This is possible

in periods in which the aggregate shortfall does not exceed the capacity. In periods in which the

capacity is insufficient, all the capacity is used. Only in such periods, the allocation rule becomes

relevant. An important aspect of the class of allocation rules proposed by us is that, in any
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period, the only state information these decisions require is the opening shortfall of each product

(equivalently, the allocation decisions depend on the inventory levels only through the shortfalls).

In other words, for a given vector of opening shortfalls, the allocation decisions remain the same

for any choice of base-stock levels. For any such allocation rule, the stationary distribution of the

vector of ending shortfalls in a period is independent of the base stock levels. This finding has an

important implication – the optimal base-stock level for each product can be computed using the

newsvendor formula applied to the convolution of that product’s demand and its ending shortfall.

Our approach is the following: We restrict attention to simple choices of allocation rules within

the aforementioned class, and we choose the base-stock vector corresponding to any particular

allocation rule optimally. In the following paragraph, we describe the allocation rules which we

propose in detail. We subsequently explain the benefits of our approach.

We use a family of allocation rules which we refer to as weighted balancing rules. These rules

work as follows. Each product is assigned a strictly positive weight which is constant through time.

Next, at the beginning of each period, we rank order the products based on their weighted shortfalls

(i.e. the shortfall divided by the weight). We then take the highest ranked product (i.e., the one

with the largest weighted shortfall), and use the capacity to bring its weighted shortfall to be equal

to the weighted shortfall of the second highest product. Next, we allocate capacity to both these

products simultaneously until their weighted shortfalls coincide with the third highest product.

We continue this procedure with subsequent products until the entire capacity is exhausted. As

mentioned earlier, for any vector of weights, the base-stock level for each product is chosen optimally.

This completes the description of a weighted balancing policy, given the vector of weights.

We now discuss the issue of choosing the weight vector. One special choice is that all weights

are equal to 1 - we call the resulting allocation rule as the symmetric rule. At the other extreme are

choices of the following type: There is some permutation {(1), (2), . . . , (N)} of the N products such

that the weight for (1) << the weight for (2) << . . . << the weight for (N) (here, we use << to

mean “much smaller than”). Intuitively, such a choice mimics the priority rule, i.e. the rule which

devotes all the available capacity to (1) until its shortfall is zero and then devotes all the remaining

capacity to (2) until its shortfall is zero and so on. Later, we will prove that this priority rule, can

be approximated by a suitable weighted balancing policy, for every beginning shortfall. We will

show under certain assumptions that the symmetric rule is asymptotically optimal in high service
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level regimes while the priority rule is asymptotically optimal in heavy traffic. But, in general, the

heuristic we propose searches over the space (more precisely, a grid) of weight vectors and picks the

best vector – we will refer to the policy of using this weight vector along with the corresponding

optimal base-stock levels as the search policy. Thus, for every problem instance, the search policy

is at least as good as the two asymptotically optimal rules mentioned above; therefore, this policy

also has the desired optimality property in both the asymptotic regimes. We conclude this section

by summarizing the benefits of the class of weighted balancing policies.

1. In the single product case, our policy (when there is only one product, there is only one policy

in this class) is optimal.

2. When all products are symmetric (i.e. they have identical costs and demand distributions),

we show (in §4) formally that our policy with symmetric weights is optimal.

3. In high service level regimes, our policy with symmetric weights is asymptotically optimal.

4. In heavy traffic (i.e. when utilization approaches one), the policy with weights chosen to

mimic a priority policy is asymptotically optimal.

2 Related Literature

We note that the single product capacitated inventory problem is a special case of our problem. It

is well known that a modified base stock policy is optimal for the single product problem as noted

in Federgruen and Zipkin (1986).

Not much is known about the the problem with multiple products and limited capacity due

to two sets of difficulties – computational and theoretical. From a computational perspective, a

dynamic programming approach to solve this problem becomes intractable due to the curse of

dimensionality. Providing simple and cost-effective heuristics which scale well to problems with

many products is valuable - we will see that the policies we propose have these desirable attributes.

The theoretical difficulty is as follows. In the finite horizon dynamic program for the single

product problem, the cost-to-go function is convex, and that guarantees the optimality of base-

stock policies. The cost-to-go function can be shown to be convex even for the multi-product

problem; however, this only guarantees the existence of a minimizer (interpreted as the vector of
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optimal after-order inventory levels) but it does not guarantee the optimality of base-stock policies.

(We will show in Theorem 5 that base-stock policies are optimal for the special case in which all

products have identical demand distributions and costs).

Moreover, even temptingly simple and intuitive statements do not follow from convexity. For

instance, one would imagine that the optimal policy possesses the following property which base-

stock policies satisfy: If the inventory levels of all products at the beginning of a period are smaller

than their optimal after-order inventory levels, then the inventory level of every product after

ordering will be no larger than the optimal after-order inventory level. The careful reader will

note that this property does not follow from convexity. In fact, a description of the optimal policy

has so far been provided only for the two product case (that too, only for the finite or infinite

horizon discounted cost problems, not the average cost problem) by Shaoxiang (2004) who expands

on the early work by Evans (1967). For this case, Shaoxiang shows that the optimal policy is a

base-stock policy. For the two product case, our weighted balancing rules can be viewed as linear

approximations of the monotone switching curve in Shaoxiang (2004).

DeCroix and Arreola-Risa (1998) study the periodic review multi-product problem under both

the finite horizon and the infinite horizon discounted cost criteria. They prove the optimality (for

the finite horizon) of base-stock policies for the special case where all products are identical both

in costs and demand distributions, and when the inventory level of each product in the first period

is below its target level. For the general case, they provide a heuristic, but there are no results on

the asymptotic performance of those policies.

Aviv and Federgruen (2001) study a multi-product inventory system in which production occurs

in two stages in every period. In the first stage, a common product (“blank”) is produced, and,

in the second stage, blanks are converted into finished products. They present a heuristic and a

lower bound for allocating blanks to develop insights for delayed differentiation. When the lead

times at both stages are zero, their problem is the same as ours. While their heuristic policy is

optimal for the single product problem, it can be verified that it is not optimal even for the multi-

product problem with symmetric products – this is because the base-stock levels used are obtained

by solving a relaxed problem. As with DeCroix and Arreola-Risa’s heuristic, there are no results

on the asymptotic performance of this policy.
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While our focus is on periodically reviewed systems (i.e. discrete time), there are counterparts

in make-to-stock queues - we briefly review this literature. Ha (1997) studies a special case with two

products and shows several structural properties of the optimal policy – these results are similar to

Shaoxiang’s results in the discrete time case. The other papers in the area (Zipkin, 1995; Veatch

and Wein, 1996; Rubio and Wein, 1996; Pena-Perez and Zipkin, 1997) study multi-product systems

in the framework of multi-class make-to-stock queues – that is, the entire attention is on the class

of base-stock policies and on finding good policies within this class.

This body of work uses a combination of heavy traffic analysis and computational tests to

motivate and evaluate various choices of base-stock levels and allocation rules. Most works in this

literature stream assume Poisson demand processes. Among these papers, Pena-Perez and Zipkin

(1997) and Veatch and Wein (1996) are closely related to our paper, as explained below.

Pena-Perez and Zipkin (1997) argue that a specific priority rule is asymptotically optimal under

certain assumptions for systems in “heavy traffic”, i.e. systems where the aggregate demand rate

is close to the production capacity rate. Their asymptotic analysis is based on the results of Wein

(1992) and uses diffusion approximations. In this paper, we show a parallel result in periodic

inventory models with two main strengths: (a) our notion of asymptotic optimality is strong (i.e.

the difference between the cost of the priority policy and the optimal cost is bounded, while the

optimal cost itself approaches infinity in heavy traffic) whereas their notion is weak (i.e. the ratio

between the cost of the priority policy and the optimal cost approaches one) and (b) our proof is

from first principles and does not rely on diffusion approximations.

Veatch and Wein (1996) propose and evaluate index rules - these rules suggest that when

production occurs, it should be devoted to the product with the lowest index at that time. Our

weighted balancing rules are analogous to “linear” index rules.

We conclude this section with the following summary on how our work contributes to the

literature on multi-product inventory systems. Our paper first proves our weighted balancing

policies are optimal under high service levels. We also prove the asymptotic optimality of our

policies in heavy traffic - an approach typically employed in queueing models. Both these theoretical

results are new to the literature with very sparse theoretical findings. Particulary, our weighted

balancing policies reduce to the optimal policy for the two special cases for which the optimal policy

is known, namely, the single product case and the symmetric, multi-product case. Finally, we will
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demonstrate in Section 7 that our policies consistently perform better than the existing approaches

in this literature.

3 Model Description

We index the products by n, 1 ≤ n ≤ N . The holding and backorder cost associated with product

n in $/unit/period are hn and bn, respectively. Periods are indexed by t ≥ 1. In period t, the

net-inventory, xnt (inventory on hand minus backorders) for each product n is observed and the

production quantity, qnt , for each product is decided. The total production quantity qt =
∑N

n=1 q
n
t

is constrained from above by a capacity limit κ. Next, the demand, Dn
t for each product n is

observed. Finally, the cost Ct incurred for this period is computed based on the inventory levels

and backorder levels at the end of the period as follows:

Ct =
N∑
n=1

(
hn · (xnt + qnt −Dn

t )+ + bn · (Dn
t − xnt − qnt )+

)
.

The optimization problem that we are interested in solving is that of minimizing the long

run average cost when the set of admissible (or feasible) policies is the set of all non-anticipatory

policies. A formal definition of this problem follows. A non-anticipatory policy π is described

by a set of vector-valued functions {πt : t = 1, 2, . . . , } where qnt = πnt (xt); here, xt is the state

vector (x1
t , . . . , x

N
t ) in period t and πt is a function from <n → <n,+. Let Π denote the set of all

non-anticipatory policies π such that the capacity constraint

N∑
n=1

πnt (x) ≤ κ for all x ∈ <n and for all t ∈ {1, 2, . . .}

is satisfied. If Cπt denotes the cost incurred by the system in period t when the system follows the

policy π, our performance measure is

Cπ = lim
T→∞

supE[
T∑
t=1

Cπt ]/T .

The optimal long run average cost is defined as C∗ = infπ∈ΠC
π .
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Throughout the paper, we assume that the sequence of random vectors {Dt} is independent and

identically distributed across time periods, where Dt = (D1
t , . . . , D

N
t ). Note that we allow for the

demands of the products to be correlated. We use Dn to denote a random variable with the same

distribution as the single period demand for product n and D to denote a random variable with

the same distribution as the aggregate single period demand. Let µn = E[Dn]. We also assume

that capacity exceeds aggregate expected demand, i.e., µ :=
∑N

n=1 µ
n < κ , which is a necessary

condition for the existence of a policy with a finite long-run average cost. Finally, the aggregate

demand in a period can exceed capacity with positive probability, i.e., P
(∑N

n=1D
n > κ

)
> 0.

When the above condition does not hold, we can decompose our problem into a set of N newsvendor

problems.

Let ΠBS denote the subset of stationary base-stock policies described at the beginning of Section

1.1. We now introduce some notation specific to ΠBS .

Let Sn denote the target or base-stock level for product n, and S denote the vector of base-stock

levels. In our analysis of stationary base-stock policies, we assume that xn1 ≤ Sn for all n. Let

Wn
t = Sn−xnt ; we refer to Wn

t as the opening shortfall for n in period t. Let V n
t denote the ending

shortfall, i.e. shortfall after ordering. So, V n
t = Wn

t − qnt . By definition of a base-stock policy, the

following condition holds:

if
N∑
n=1

Wn
t ≤ κ , then qnt = Wn

t for all n .

That is, all inventory levels are raised to their respective targets, if that is feasible. Otherwise,

the entire capacity is used for production without the inventory level of any product exceeding its

target, i.e.,

if

N∑
n=1

Wn
t > κ , then

N∑
n=1

qnt = κ and qnt ≤Wn
t for all n .

Notice that the exact manner in which the capacity is allocated among products in such periods

has not been completely specified yet. We will specify these allocation rules shortly.

Let ΠBS−B denote the set of stationary base-stock policies in which the weighted balancing allo-

cation rule is followed. We will refer to these as weighted balancing policies. A verbal description of
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these allocation rules was given in Section 1.1. Clearly, ΠBS−B is a subset of ΠBS . A mathematical

description of a policy in this class follows.

Weighted Balancing Allocation: Rank the products according to the ‘weighted’ shortfalls

{W j
t /α

j}, where αj is the weight corresponding to product j. Let α = (α1, . . . , αN ). The symmetric

rule chooses α = 1, where 1 = (1, 1, . . . , 1). Let ñ denote the product with the nth largest value of

the weighted shortfall, W j
t /α

j , breaking ties arbitrarily. Allocate production to product ñ = 1 until

its weighted shortfall equals that of ñ = 2, or until the capacity is exhausted. Using the remaining

capacity, allocate production to products 1̃ and 2̃ (proportionally based on their weights so that

their weighted shortfalls are always equal) until their weighted shortfalls equal that of 3̃, or until

the capacity is exhausted. This process is continued until the entire capacity available in the period

is exhausted. While the description above applies when inventory and production quantities are

real-valued, a simple uniform randomization scheme can be used to define the policy when these

quantities are integer-valued. Note that any policy π ∈ ΠBS−B is completely specified by a pair

(S,α) where S is a vector of base-stock levels S and α is a vector of weights.

Priority Allocation: Let {(1), (2), . . . , (N)} denote any permutation of {1, 2, . . . , N}. Then, a

priority rule defined by this permutation works as follows: In every period, allocate production to

(1) until its shortfall is zero or the entire capacity is consumed; then, proceed to (2) and do the

same until all product shortfalls are zero or the capacity is consumed. Intuitively, this rule can

be imitated by a weighted balancing rule which assigns the weights αjs in an extremely disparate

fashion. We show this formally in Section 4.

4 Weighted Balancing Policies: Preliminaries

We start by explaining the connection between weighted balancing policies and the known structural

properties of the optimal policy for the special case of two products. Shaoxiang (2004) shows for

the infinite horizon, discounted cost version of this problem that an optimal policy satisfies the

following: There exists a base-stock vector (S1, S2) such that once the inventory vector reaches a

point which is componentwise smaller than (S1, S2), then the inventory vector in every subsequent

period is also smaller than (S1, S2). Thus, the effective state space (i.e. possible inventory vectors)

10



is (−∞, S1] × (−∞, S2]; so, it is sufficient (for our purposes since we consider the average cost

version of the problem) to study the optimal policy within this “rectangle”. Within this region,

the optimal policy is completely described by a monotone switching curve or function x2(x1).

Our weighted balancing policies work exactly like the optimal policy except that they replace

x2(x1) with the function (α2
α1

) · x1. In other words, computing the optimal policy involves finding

or searching for the function x2(x1), i.e. the optimal “switching curve” within the space of all

increasing functions, whereas, the best weighted balancing policy is found by searching for the best

ratio α2
α1

.

Consider a stationary base-stock policy with base-stock levels S1, . . . , SN for the N products.

Let Vt =
∑N

n=1(Sn−xnt −qnt )+ denote the aggregate ending shortfall in period t. Let Dt =
∑N

n=1D
n
t

similarly denote the aggregate demand the system faces in period t. We begin by making a simple

observation about the aggregate shortfall process. All proofs are relegated to the appendix.

Lemma 1. Consider any policy in ΠBS with some base-stock vector S. Assume xn1 = Sn for

all n. The evolution of the aggregate shortfall process {Vt}, is described by the recursive equation

Vt+1 = (Vt + Dt − κ)+. Moreover, (i) the distribution of Vt is independent of S for all t, (ii) Vt

converges in distribution to a limiting random variable V∞ as t → ∞ and (iii) the distribution of

V∞ is also independent of S.

Proof of Lemma 1 is straightforward and is omitted for the sake of brevity. We now make a few

observations about the vector of individual shortfalls of the products.

Lemma 2. Consider any policy in ΠBS−B defined by a base-stock vector S and a weight vector

α. Assume xn1 = Sn for all n. Then, (i) the distribution of the vector of ending shortfalls is

independent of S for all t, (ii) the sequence of distributions of this vector converges to a limiting

distribution as t→∞ and (iii) this limiting distribution is also independent of S.

Proof of Lemma 2 is straightforward and is omitted for the sake of brevity. For any policy

π ∈ ΠBS−B defined by the pair (S,α), we use Vα
t to denote the vector of shortfalls in period t.

(Note that it is not necessary to include the argument S in the notation for the shortfall vector

since its distribution does not depend on S.) Let Vα denote the limiting distribution of Vα
t ; thus,

V α,n is the steady-state shortfall of product n. Let Φα,n denote the distribution of the convolution
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of V α,n and Dn. Let

Sα∗ = (Sα∗,1, . . . , Sα∗,N ), where Sα∗,n = (Φα,n)−1

(
bn

bn + hn

)
.

We will now show that the base-stock vector Sα∗ is the optimal choice of S within the subset of

those policies in ΠBS−B that use the weight vector α.

Lemma 3. Consider the class of weighted balancing policies, ΠBS−B. Within the subclass of

policies which use the weight vector α, the policy with the base-stock vector Sα∗ is optimal.

Next, we discuss the special case in which all products are “symmetric”, i.e. identical in terms

of cost parameters and demand distributions. We are able to make stronger statements about the

optimal policy for this special case. We first formally state our assumption.

Assumption 1. The following conditions hold. (a) hn = h and bn = b for all n. (b) (D1, . . . , DN )

has a symmetric distribution, that is, the joint distribution of (D1, . . . , DN ) is identical to the joint

distribution of (Dθ(1), . . . , Dθ(N)) for any permutation (θ(1), . . . , θ(N)) of (1, . . . , N).

Theorem 4. Consider the policy in ΠBS−B defined by a base-stock vector S and the weight vector

1. Assume that xn1 = Sn. Under Assumption 1 (b), the following statements hold.

(i) The distribution of V1
t is symmetric for all t.

(ii) The distribution of V1
∞, the limiting random vector mentioned in Lemma 2, is symmetric.

Next, we show that the policy in ΠBS−B that uses the symmetric allocation rule and the

corresponding optimal base-stock vector (as defined in Lemma 3) is optimal over all policies, not

just base-stock policies, when all products are identical. This result is the average cost version of

Theorem 3 of DeCroix and Arreola-Risa (1998)1, which pertains to the finite horizon and infinite

horizon discounted cost problems.

1We note that the conclusion of Theorem 3 of DeCroix and Arreola-Risa (1998) is not completely correct. For
example, they claim the following: if, in some period, some products have inventory levels which exceed their optimal
base-stock levels and if it is feasible to raise the inventory levels of the other products to their optimal base-stock
levels, then the optimal policy is to not produce any of the products in the former category while bringing the other
products’ inventories to their optimal base-stock levels. This claim is incorrect because the optimal inventory level
for a product after ordering depends non-trivially on the inventory levels of the other products since the cost-to-go
function is not separable even though the single period cost function is separable with respect to the inventory levels
of the products. However, we note that their claims are correct for every inventory vector in which every component
is below its corresponding optimal base-stock level. The above comments also apply to Theorem 1 of their paper.
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Theorem 5. Consider the policy in ΠBS−B with the weight vector 1 and the base-stock vector S1∗.

Under Assumption 1, this policy minimizes the long run average cost per period limT→∞ supE[
∑T

t=1C
π
t ]/T

over Π, the class of all non-anticipatory policies.

In the next result, we show that shortfalls under the priority policy can be approximated by

policies in ΠBS−B.

Lemma 6. Let ((1), (2), . . . , (N)) denote any permutation of {1, 2, . . . , N}. Consider any given

shortfall vector W (before ordering) in any period. Let αm be defined by α
(1)
m = 1 and α

(j)
m =

m · α(j−1)
m for j ∈ {2, . . . , N}. Let VP and Vαm denote the shortfall vectors after ordering under

the priority rule (with priorities (1) > (2) > . . . > (N)) and the weighted balancing rule (with

weight vector αm), respectively. Then, for every ε > 0, there exists a sufficiently large M such that

|Vαm −VP | < ε for all m > M , where |(u1, u2, . . . , un)| = max{u1, u2, . . . , un}.

5 High Service Level Asymptotics

We show that if the joint distribution of demands for all the products is symmetric and the holding

costs for all products are identical, then the best base-stock policy under the symmetric allocation

rule is asymptotically optimal along a sequence of problems in which the backorder costs are scaled

by a factor β that approaches ∞. In more practical terms, when the cost parameters are such

that service levels for all products are high (in any reasonable policy), the best base-stock policy

under the symmetric allocation rule is close to being optimal. We note that we do not restrict the

backorder cost parameters for the products to be identical in this analysis. We proceed to state

our assumptions formally, and then present our analysis.

Assumption 2. The following conditions hold.

(a) All products have identical holding costs, that is, hn = h for all n ∈ {1, . . . , N}.

(b) (D1, . . . , DN ) has a symmetric distribution.

When the demand vector has a symmetric distribution, let us employ C∗(h, b) to denote the

optimal long run average cost of a system in which all the products have the same holding cost

parameter h and the same backorder cost parameter b. When the backorder costs are not identical

(which might generally be the case), we use C∗(h,b) to denote the same except that b represents
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the vector of backorder costs over all the products. We denote the long-run average cost of the

policy in ΠBS−B with parameters (S1∗,1) as C1∗(h,b). Finally, we denote the lowest backorder

cost parameter in b by min(b) and the average of all the individual itemwise backorder costs by

avg(b).

In what follows, we note that C∗(h, b) can be evaluated using Theorem 4. In our analysis, we

use the cost C∗(h, b) as a basis for cost comparisons across various policies because we know how

it can be computed. In fact, we know that

C∗(h, b) = N · L(h, b, V 1,1
∞ +D1) , (1)

where (i) V 1,1
∞ is the marginal distribution of any component of the vector V1

∞ (recall that the

distribution of V1
∞ is symmetric when the distribution of (D1, . . . , DN ) is symmetric) and (ii)

L(h, b,X) is the optimal cost of a single product newsvendor problem with holding and penalty

cost parameters h and b respectively, and facing a demand distribution of X, i.e.,

L(h, b,X) = min
y

h · E[(y −X)+] + b · E[(X − y)+] .

Before proceeding to the details of the analysis leading to the asymptotic optimality result of

Theorem 8, we outline the main steps. In Lemma 7, we show that C∗(h, avg(b)) and C∗(hmin(b))

are upper and lower bounds, respectively, on C1∗(h,b) - the long run average cost of the optimal

symmetric policy. Notice that both the bounds are optimal costs of systems in which the products

are symmetric in costs. (Recall that throughout this section we assume that the product demands

are symmetric.) Thus, we can express these bounds as the optimal costs of certain newsvendor

problems involving the convolution of demands and shortfalls as explained in the previous para-

graph. Our goal is to show that the ratio C1∗(h,β·b)
C∗(h,β·b) approaches 1 as β approaches ∞. Thus, it is

sufficient to show that the ratio of the optimal costs of the two newsvendor problems alluded to

above converges to 1 since one of these optimal costs is an upper bound on the numerator of the

ratio of interest and the other is a lower bound on its denominator. We establish this convergence

in the proof of Theorem 8 by making use of a result in Huh et al. (2009) (presented in our appendix

as Lemma 12) for the standard newsvendor problem under a mild distributional assumption on

demand. Since the newsvendor problems we are interested in involve the convolution of a prod-
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uct’s demand and its shortfall, we have to demonstrate that this convolution also satisfies their

assumption - this step is done in Lemma 13 of our appendix.

Lemma 7. Under Assumption 2, the following inequalities hold:

C∗(h,min(b)) ≤ C∗(h,b) ≤ C1∗(h,b) ≤ C∗(h, avg(b)) . (2)

We are now ready to derive an upper bound on the ratio C1∗(h,b)
C∗(h,b) and show that this ratio

approaches 1 as b is scaled by a factor β which approaches ∞. This is the asymptotic optimality

result that we have been referring to all along - for this result, we assume that the demand distri-

bution for every product is IFR, i.e. has an increasing failure rate which is a condition satisfied by

several common distributions.

Theorem 8. Under Assumption 2, the increase in cost due to using the symmetric allocation

rule and its corresponding optimal base-stock vector relative to the optimal cost can be bounded as

follows: (
C1∗(h,b)

C∗(h,b)

)
≤
(
C∗(h, avg(b))

C∗(h,min(b))

)
.

Moreover, if the common marginal distribution of the random variables {Dj} is an IFR distribution,

this ratio converges to 1 as the backorder cost parameters grow, in the following sense:

lim
β→∞

(
C1∗(h, βb)

C∗(h, βb)

)
= 1 .

6 Heavy Traffic Asymptotics

In this section, we assume without loss of generality that the products are numbered in such a

way that h1 ≥ h2 ≥ . . . ≥ hN . We show that when bN = min{bj}, the priority rule which assigns

priorities based on the order (1, 2, . . . , N) is asymptotically optimal in heavy traffic, i.e. as the

capacity κ approaches the expected aggregate demand E[
∑N

1 Dj ]. As mentioned earlier, Pena-

Perez and Zipkin (1997) argued that such a result holds in continuous time systems by appealing

to diffusion approximations based on Wein (1992). Our proof, as we will see, is from first principles

and does not use such approximations. Moreover, our result is that the asymptotic optimality

discussed above holds in the strong sense whereas Pena-Perez and Zipkin use it in the weak sense.
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We say that a policy π is asymptotically optimal in the weak sense along a sequence of systems

indexed by n if the optimal cost approaches ∞ as n approaches ∞ and the ratio between the cost

of π and the optimal cost approaches one. Furthermore, if the absolute difference between the cost

of π and the optimal cost is bounded, we say π is strongly asymptotically optimal.

To proceed with our asymptotic analysis, we first introduce some notation. Let C∗(h,b, κ) be

the optimal long run average cost of our inventory system when the holding cost vector is h, the

backorder cost vector is b and the capacity is κ ∈ (µ,∞). Let C∗(h, b, κ) be the same as C∗(h,b, κ)

when h = (h, h, . . . , h) and b = (b, b, . . . , b). Let CP (h,b, κ) denote the long run average cost of the

priority policy, P, which assigns priority based on the order (1, 2, . . . , N) and uses the corresponding

optimal base-stock levels according to Lemma 3.

We present a preliminary lemma on the asymptotic behavior of the optimal cost C∗(h,b, κ)

using a well known result due to Kingman (1962) that a suitably scaled distribution of the waiting

time in a single server queue converges to an exponential distribution in heavy traffic.

Lemma 9. As the capacity κ approaches the expected aggregate demand µ, the optimal cost ap-

proaches ∞, i.e.

lim
κ↓µ

C∗(h,b, κ) =∞ .

Next, we present our assumption on the cost parameters formally before stating and proving

our asymptotic result in Theorem 10.

Assumption 3. The cost parameters satisfy the following conditions: h1 ≥ h2 ≥ . . . ≥ hN and

bN = min{bj : 1 ≤ j ≤ N}.

Theorem 10. Under Assumption 3, the following statement holds: There exists a finite constant

M <∞ such that

CP (h,b, κ)− C∗(h,b, κ) ≤M for all κ > µ .

Therefore, limκ↓µ
CP (h,b,κ)
C∗(h,b,κ) = 1.

7 Policy Performance and Results

Theorem 8 establishes that, as the backorder costs grow (or required service levels increase), the

optimal cost under the symmetric allocation rule asymptotically approaches the optimal cost when
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the holding costs and demand distributions of all products are identical. While this result is of

theoretical interest, it is also important to benchmark our policy.

Lower Bound for Benchmarking: Since the optimal cost is virtually impossible to calculate

for a large set of problem instances due to the curse of dimensionality associated with dynamic

programming, we require an easily computed lower bound on the optimal cost. Although we

already have such a lower bound in Lemma 7 for the case of symmetric demands, we require a more

generally applicable lower bound because the case of asymmetric demands is also included in our

numerical investigation. We state such a lower bound in Lemma 11.

Let Gn(x) = hn ·E[(x−Dn)+]+bn ·E[(Dn−x)+] be the expected single period newsvendor cost

function for product n. We now develop a lower bound on the optimal long run average cost by using

the free balancing relaxation (see, for example, Eppen and Schrage (1981) or Aviv and Federgruen

(2001)). Let F1(y) be defined as follows: F1(y) = miny
∑N

n=1G
n(yn) s.t.

∑N
n=1 y

n = y. Note

that the computation of F1(y) can be done quite efficiently using a greedy algorithm to solve the

optimization problem above. We can now construct a lower bound on the optimal long run average

cost using the function F1(·). Recall that V∞ is the limiting random variable of the stochastic

process representing aggregate ending shortfalls, i.e. {Vt}. We employ this limiting distribution to

derive a lower bound on the optimal cost.

Lemma 11. Let LB1 = minS E[F1(S − V∞)]. Then, LB1 is a lower bound on the optimal long

run average cost over Π, the class of all non-anticipatory policies.

7.1 Existing Heuristics

We now describe the heuristics of DeCroix and Arreola-Risa (1998) and Aviv and Federgruen

(2001), and compare their heuristics with our weighted balancing approach.

The heuristic of DeCroix and Arreola-Risa (1998) is a stationary base-stock policy. We now

explain how their base-stock levels are chosen and what their allocation rule is. Let (S1, . . . , SN )

denote the vector of base-stock levels for the N products. For any such vector, the allocation

rule they use in every period in which capacity is insufficient to raise the inventory levels of all

products to their base-stock levels is that of “balancing” the ratios {xn/Sn}, where xn is the net-

inventory of product n at the beginning of the period. That is, allocate capacity to the product
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with the lowest value of this ratio until this ratio equals the next highest ratio; from then, allocate

capacity to these two products until their ratios equal the next highest ratio and so on, until the

capacity is exhausted. It still remains to specify how the base-stock vector is chosen. This is done

as follows. For every n ∈ {1, . . . , N}, let zn denote the newsvendor level for product n. That is,

zn = max{arg miny G
n(yn)} . For products n ∈ {2, . . . , N}, let γn = zn/z1. Let f(S1) denote the

long run average cost of using the policy with the base-stock vector (S1, S1 · γ2, S1 · γ3, . . . , S1 · γN )

and the allocation rule described above. The prescribed value of S1 is that which minimizes f(·)

and the prescribed value of Sn for any n 6= 1 is S1 ·γn. Note that the evaluation of f(S1) for a given

value of S1 requires the computation of the steady state distribution of the shortfall vector. The

computational effort for our weighted balancing approach is just the effort required to obtain this

distribution. However, the heuristic above requires evaluating f(S1) over an entire search set for

S1, whereas we compute the steady state distribution of the shortfall vector only once. Finally, as

evidenced by our numerical experiments, our policy significantly outperforms the policy described

above.

The heuristic of Aviv and Federgruen (2001) is also a stationary base-stock policy. Let (S1, . . . , SN )

denote the vector of base-stock levels for the N products, the computation of which we dis-

cuss after discussing their allocation rule, which is a myopic allocation rule. That is, in ev-

ery period in which there is not enough capacity for the inventory levels of all the products

to attain their base-stock levels, the vector of inventory levels after ordering, say (y1, . . . , yN ),

is chosen to be a solution to the following optimization problem: miny
∑N

n=1G
n(yn) s.t yn ≥

xn ∀ n and
∑N

n=1(yn − xn) = κ , where xn is the net inventory of product n at the beginning

of the period. The base-stock vector (S1, . . . , SN ) is chosen as the solution to the optimization

problem min
∑N

n=1G
n(Sn) s.t.

∑N
n=1 S

n = s , where s = arg minS E[F1(S − V∞)]. Recall that

F1(y) = miny
∑N

n=1G
n(yn) s.t.

∑N
n=1 y

n = y. In terms of computational effort, this heuristic

also requires the computation of the steady state distribution of the aggregate shortfall, in order

to obtain the function F1; thus, the AF method is comparable to our weighted balancing policies

in terms of computational effort. However, the AF heuristic is not guaranteed to be optimal even

in the symmetric case because the base-stock levels are not chosen optimally. Our policy provides

optimal policies in the symmetric case.
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7.2 Policy under Weighted Balancing

Recall that we have established the optimality of the symmetric policy (a weighted balancing policy

with weights of 1) and of the priority policy (a weighted balancing policy with extremely different

weights) in the asymptotic regimes of high service levels and heavy traffic, respectively. Motivated

by the fact that these two policies are very different in terms of their weight vectors, we propose

searching over the space of weight vectors. While an exhaustive search for the weights would involve

searching over the N − 1 dimensional space of positive reals, we design a one dimensional search

using a weight vector which is prescribed by m similar to Lemma 6, to find the best weighted

balancing policy (i.e. the policy with the lowest cost). In our tables, we will refer to this policy as

the “Search” policy or simply as our policy.

We conducted several computational experiments and compared the performance of our policy,

with those of the heuristics of DeCroix and Arreola-Risa (1998) (which we refer to as the “DA

heuristic” in the tables) and Aviv and Federgruen (2001) (which we refer to as the “AF heuristic”

in the tables). We also compared our heuristic policy against the priority policy (represented as

“Pri” in the tables).

7.3 Computational Design

In the computational study, we report problems with three products, i.e. N = 3. Nevertheless,

there are several attributes and features of importance in the multi-product problem, viz. the

capacity available, the mean and the standard deviation of the demands of individual products, the

holding and penalty costs of each product. To carefully calibrate the performance of our policy, we

have to demonstrate the performance with respect to each parameter in the model. To achieve this

end, we build our computational experiments by adding more complexity to the problem in each

subsection, and demonstrate the improved performance of our policy.

We report a summary of our computational results run for a large range of Erlang (k, λ) de-

mands, since by using Erlang demand with appropriate k and λ, we can arbitrarily approximate

any continuous demand distribution up to the first two moments (mean and variance).

� In Section 7.4, we explore our policy under asymmetric demands (but symmetric costs), and show

that our policy performs better as the demands across different products get more asymmetric.
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� In Section 7.5, we explore the impact of asymmetric penalty costs but with symmetric demands.

To make costs asymmetric, we hold holding costs identical, and vary backorder cost {bn} to con-

struct problems with different service levels, while also depicting cost asymmetry among the prod-

ucts. We notice the performance of our policy improves (i) as the capacity gets scarcer, and (ii)

as the penalty costs become more asymmetric.

� In Section 7.6, we combine the effect of asymmetric demands and asymmetric penalty costs.

Moreover, products with high penalty costs may have high (or low) demand variability.

� In Section 7.7, we allow for all the parameters, i.e., the holding costs, the penalty costs and the

demand distributions to be asymmetric, and find that our policy outperforms the existing policies

consistently.

� In Section 7.8, we show that for the cases with high asymmetry (both in demand and costs),

our policy performs well when capacity is ample, and then demonstrate that as the total capacity

becomes scarce (i.e, κ decreases), our policy does increasingly better.

To summarize, we establish that our policy is asymptotically optimal, while showing that it

consistently outperforms other approaches in the literature.

7.4 Effect of Asymmetric Demands

We begin with a base case (the first instance in Table 1), where the capacity is held at 48, and

perturb only the demand distributions. (The products continue to be symmetric, except for their

demand distributions).

To create systematic demand asymmetry effects, we hold the k-parameter of the Erlang dis-

tribution identical across all products and vary λ. Since the mean demand of the Erlang(k, λ)

distribution is k
λ and the variance is k

λ2
, by increasing the λ parameter, we decrease the mean

demand and the demand variance of a product. For the experiments shown in Table 1, in each

successive line, we increase λ for product 1 and decrease λ for product 3, while holding all other

parameters constant. Therefore, as we progress down Table 1, the variance to mean ratio for prod-

uct 1’s demand decreases while the ratio increases for product 3. Whenever we vary the demand,

we will repeat this scheme for all computational experiments that follow in the paper.
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b = (3, 3, 3) Costs % gap of heuristic

λ1 λ2 λ3 LB Pri DA AF Search LB Pri DA AF

1 1 1 49.5 56.9 53.1 53.8 53.1 7.2% 7.3% 0.0% 1.4%
1.1 1 0.9 49.7 57.3 53.5 54.3 53.5 7.6% 7.2% 0.0% 1.6%
1.2 1 0.8 50.5 58.7 54.7 55.8 54.7 8.3% 7.3% 0.1% 2.0%
1.3 1 0.7 52.0 61.3 56.9 58.5 56.9 9.4% 7.7% 0.0% 2.8%
1.4 1 0.6 54.2 65.5 60.5 62.9 60.5 11.6% 8.4% 0.0% 4.0%
1.5 1 0.5 57.9 72.9 66.7 70.5 66.6 15.0% 9.4% 0.1% 5.8%

b = (10, 10, 10)

1 1 1 84.2 97.2 88.5 89.8 88.5 5.1% 9.8% 0.0% 1.5%
1.1 1 0.9 84.5 97.3 89.0 90.5 89.0 5.3% 9.4% 0.0% 1.8%
1.2 1 0.8 85.4 98.8 90.3 92.2 90.3 5.7% 9.3% 0.0% 2.1%
1.3 1 0.7 86.7 101.5 92.6 95.1 92.6 6.8% 9.6% 0.0% 2.7%
1.4 1 0.6 88.1 108.2 95.8 99.3 95.8 8.7% 13.0% 0.0% 3.8%
1.5 1 0.5 89.5 123.0 105.0 107.5 104.0 16.2% 18.2% 0.9% 3.3%

b = (15, 15, 15)

1 1 1 96.5 111.4 100.9 102.5 100.9 4.6% 10.4% 0.0% 1.5%
1.1 1 0.9 96.7 111.3 101.3 102.8 101.3 4.8% 9.8% 0.0% 1.5%
1.2 1 0.8 97.3 112.4 102.5 104.1 102.5 5.3% 9.7% 0.1% 1.6%
1.3 1 0.7 98.0 116.0 104.2 106.6 104.2 6.3% 11.3% 0.1% 2.3%
1.4 1 0.6 98.0 124.4 107.3 110.0 106.7 8.9% 16.7% 0.6% 3.1%
1.5 1 0.5 98.3 141.5 118.2 123.0 117.8 19.8% 20.1% 0.3% 4.3%

Table 1: Cost behavior as the demands become asymmetric. All products have the same holding cost h = 1

and backorder cost (as shown). We have k1 = k2 = k3 = 11, λs as indicated. Thus, Product 1 (Product

3) has a lower (higher) mean demand and lower (higher) variance, when compared to product 2. The total

capacity is 48.

We note three successive sub-tables in Table 1. Within each sub-table, the demand is made

more asymmetric for a given penalty cost. Across sub-tables, we progressively increase the penalty

costs.

Our policy performs significantly better than the priority policy in all the cases. In fact, as the

penalty costs increase, the relative superior performance of our policy is more pronounced. Also

observe that our policy performs better than the AF heuristic. Note that the performance improves

as the demands become more asymmetric. We also note that our cost performance is comparable

to the DA heuristic under asymmetric demands and symmetric costs. (In most cases, the difference

is negligible; our costs are always better than DA but within 1.0% difference).
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7.5 Effect of Asymmetric Penalty Costs

To explore the effect of asymmetric backorder costs, we begin with our base case and examine the

performance of our policy when the demand distributions for all products are identical, but the

backorder costs are asymmetric. The mean demand and variance are fixed as in the first line of

Table 1.

In Tables 2 and 3, we gradually increase the backorder cost of product 1 successively, while

decreasing the backorder cost of product 3, thus making the newsvendor fractiles of the products

more asymmetric. Again, throughout the computations in Table 2, the demand distributions of

the products are kept symmetric, and the capacity is kept fixed at the same level. In Table 3, we

follow the scheme as in Table 2, except that the available overall capacity is lower.

k = 12, λ = 1 Costs of Heuristics % gap of our policy

b1 b2 b3 LB Pri DA AF Search LB Pri DA AF

4.5 3 2 50.4 59.9 56.7 57.0 56.2 11.5% 6.5% 0.9% 1.4%
6 3 1.5 50.9 59.0 58.2 57.0 56.3 10.6% 4.8% 3.4% 1.2%
8 3 1 51.0 57.4 59.9 55.8 55.7 9.2% 3.0% 7.6% 0.3%
9 3 1 52.1 58.5 61.4 57.1 56.9 9.2% 2.9% 8.0% 0.4%
12 3 0.75 53.3 58.8 64.2 57.7 57.5 7.9% 2.2% 11.7% 0.3%
15 3 0.6 54.4 59.2 66.7 58.4 58.2 7.0% 1.8% 14.6% 0.4%

Table 2: We consider three products with identical Erland(k, λ) demands. While the holding costs are

identical, the backorder cost of product 1, b1 is progressively increased down the table, and the backorder

cost of product 3, b3 is decreased. The total capacity is K = 48.

From Table 2, our performance is significantly better than the priority policy. As one would

expect, as the costs become asymmetric, the priority policy improves, but our heuristic continues

to outperform the priority policy. For asymmetric costs, we observe that our policy performs

significantly better than the DA heuristic. As the cost difference between the highest and the

lowest backorder costs of all products {max{bj} − min{bj}} increases, we note that our heuristic

performs much superior to the DA heuristic, providing as much as a 14.6% cost difference. When

examined against the AF heuristic, our performance is consistently slightly better.

Suppose the aggregate capacity becomes tighter under asymmetric costs. How does our policy

perform? To address this question, we re-run the tests in Table 3 by decreasing the total capacity

from K = 48 (Table 2) to K = 44. As the capacity becomes tighter (as the capacity utilization

increases from 75% to 82%), our policy performance improves significantly on every instance. For
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K = 44 Costs of Heuristics % gap of our policy

b1 b2 b3 LB Pri DA AF Search LB Pri DA AF

4.5 3 2 53.1 68.3 63.9 64.4 62.5 17.7% 9.3% 2.2% 3.1%
6 3 1.5 53.2 66.0 66.1 63.2 62.0 16.5% 6.5% 6.7% 2.0%
8 3 1 52.7 62.8 69.3 61.1 60.4 14.6% 4.1% 14.8% 1.3%
9 3 1 53.9 64.0 71.4 62.1 61.5 14.1% 4.0% 16.0% 0.9%
12 3 0.75 54.8 63.3 75.9 61.9 61.5 12.2% 2.9% 23.4% 0.7%
15 3 0.6 55.6 63.1 79.8 62.2 61.6 10.8% 2.4% 29.5% 0.9%

Table 3: Cost behavior as the backorder costs become asymmetric. Same computational design as in Table

2, except that the total capacity is reduced to 44.

instance, comparing the first rows of Table 2 and 3, as the capacity got tighter, our policy improves

from over the priority heuristic. As before, the performance of our policy is better than the AF

heuristic in all instances, with the performance gap nearly doubling from Table 2. Our policy also

significantly outperforms the DA heuristic. In fact, in the last case reported in Table 3, which is

the most asymmetric case, we outperform the DA heuristic by nearly 30% (improving from 16.6%,

when capacity was ample in Table 2).

Finally, the improved performance of our policy relative to the lower bound as asymmetry

increases is significant, given that the optimal allocation rule structure remains unknown for the

multi-product capacitated problem.

7.6 Effect of Asymmetric Demand and Penalty Costs

While the previous two subsections focus on problems with 1) asymmetric demands but symmetric

costs, and 2) asymmetric costs but symmetric demands, we now study problems where both demands

and costs are asymmetric. We report a set of experiments in Table 4. In Table 4, we construct a set

of experiments in which both the demand distributions and penalty costs are different for the three

products. Within each sub-table in the Table 4, we sequentially increase the demand asymmetry.

Across sub-tables, we steadily increase penalty costs, repeating tests.

The performance of our policy in relation to the lower bound, is steady at about 13-19% across

all sub-tables. This gap increases slightly as the demand becomes asymmetric, and the penalty

costs increase.

Our policy performs significantly better than the priority policy in all cases (on average about

40% or better). Compared to the DA heuristic, our policy performs better (i) as the demand
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Backorder Costs Costs % gap of our policy
(1, 5, 10)

λ1 λ2 λ3 LB Pri DA AF Search LB Pri DA AF

1 1 1 59.7 98.2 78.3 68.3 67.6 13.2% 44.7% 15.6% 0.9%
1.1 1 0.9 58.5 99.9 77.9 67.3 66.7 14.0% 49.7% 16.7% 0.9%
1.2 1 0.8 58.5 107.5 81.1 68.0 67.3 15.0% 59.6% 20.5% 1.1%
1.3 1 0.7 60.4 125.8 90.0 71.3 70.6 16.9% 78.2% 27.5% 1.1%
1.4 1 0.6 67.9 170.2 114.7 81.4 80.1 18.0% 112.3% 43.1% 1.6%

(2, 5, 12)

1 1 1 67.6 108.0 84.1 79.4 77.6 14.8% 37.9% 8.3% 2.4%
1.1 1 0.9 66.9 110.2 83.9 79.1 77.8 16.3% 41.7% 7.9% 1.7%
1.2 1 0.8 67.8 118.8 87.5 81.3 79.6 17.4% 49.3% 9.9% 2.1%
1.3 1 0.7 71.7 138.9 96.6 87.3 85.3 19.0% 62.8% 13.2% 2.3%
1.4 1 0.6 84.4 186.9 121.6 103.2 100.7 19.3% 85.5% 20.7% 2.4%

(3, 6, 15)

1 1 1 75.8 119.6 92.1 89.6 87.0 14.8% 35.9% 4.6% 2.1%
1.1 1 0.9 75.4 122.3 92.3 89.7 87.8 16.4% 39.4% 5.1% 2.2%
1.2 1 0.8 76.9 131.9 95.9 92.7 90.3 17.4% 46.1% 6.2% 2.6%
1.3 1 0.7 82.1 154.2 105.9 100.7 97.5 18.8% 58.1% 8.6% 3.3%
1.4 1 0.6 98.3 206.5 132.9 120.3 117.1 19.1% 76.3% 13.5% 2.7%

Table 4: Cost behavior as both costs and demands become asymmetric. The computational experiments

are structured similar to those in Table 1 except that the product backorder costs are also asymmetric and

k1 = k2 = k3 = 12, λj , j = 1, 2, 3 are indicated as above. Available aggregate capacity is 44.

becomes more asymmetric for given penalty costs, and (ii) as the costs decreases given the same

demand characteristics. Finally, our policy performance is better than the AF heuristic. Further-

more, as the penalty costs increase, the relative performance of our policy improves.

In Table 4, the items that had higher backorder costs had lower demand variability. In Table 5,

the backorder costs are reversed for the three products such that the product with higher backorder

cost also faces demand with higher variability. In general, our policy performs strongly compared to

the existing heuristics in these asymmetric cases. In fact, when compared to the symmetric demand

and symmetric cost cases discussed before, the performance of our heuristic is now consistently

better than the DA and the AF heuristic.

Table 5 indicates that as the backorder costs diverge further, the performance of our policy

improves relative to the Priority, the DA and the AF heuristics, when compared with the same

asymmetric demand case (see corresponding rows in Table 4). As products’ demand variances

diverge, our heuristic provides a cost performance of about, 4% or better than the Priority heuristic,

9% or better than the DA heuristic, and roughly 1% or better than the AF heuristic.
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Backorder Costs Costs % gap of our policy
(10, 5, 1)

λ1 λ2 λ3 LB Pri DA AF Search LB Pri DA AF

1 1 1 59.7 70.4 78.2 68.26 67.6 13.2% 4.2% 15.6% 0.9%
1.1 1 0.9 61.7 73.5 80.8 70.98 70.3 13.9% 4.7% 15.0% 1.0%
1.2 1 0.8 64.7 78.8 87.3 75.80 74.6 15.3% 5.5% 16.9% 1.6%
1.3 1 0.7 69.2 87.3 101.4 83.53 81.7 18.1% 6.9% 24.1% 2.2%
1.4 1 0.6 77.8 103.4 134.9 98.14 95.0 22.1% 8.8% 42.0% 3.3%

(12, 5, 2)

1 1 1 67.5 83.4 84.1 79.39 77.6 15.0% 7.4% 8.3% 2.3%
1.1 1 0.9 69.4 86.4 86.8 81.80 80.1 15.4% 7.9% 8.3% 2.1%
1.2 1 0.8 72.6 92.5 93.0 86.83 85.0 17.1% 8.8% 9.4% 2.2%
1.3 1 0.7 78.1 103.3 107.6 95.69 93.6 19.8% 10.4% 15.0% 2.3%
1.4 1 0.6 90.6 125.4 143.0 115.59 112.4 24.1% 11.6% 27.2% 2.9%

(15, 6, 3)

1 1 1 75.7 95.6 91.9 89.50 87.0 14.9% 14.8% 5.6% 2.9%
1.1 1 0.9 77.5 98.8 94.7 92.33 89.4 15.4% 10.6% 6.0% 3.3%
1.2 1 0.8 80.7 105.6 101.4 97.35 94.4 17.0% 11.9% 7.4% 3.2%
1.3 1 0.7 86.8 118.2 116.8 107.19 103.9 19.7% 13.8% 12.5% 3.2%
1.4 1 0.6 102.6 144.8 154.9 132.67 127.7 24.5% 13.5% 21.4% 3.9%

Table 5: Cost behavior of our policy as both costs and demands become asymmetric. Available aggregate

capacity is 44.

7.7 Asymmetric Demands, Holding, and Penalty costs

In this section, we examine general asymmetric problems with varying asymmetric holding costs,

penalty costs and demand distributions.

Table 6 shows how our policy compares to the Priority, the DA and the AF heuristics. Our

policies generally continue to perform better than the extant heuristics. Compared to the Priority

policy, our heuristic provides about 9% or more cost savings. In fact, as the costs increase (in the

lower sub-table of Table 6), we have the cost savings of our heuristic increase to 12% relative to the

priority heuristic. The performance increases as the product demands become more asymmetric.

Comparing our policy to the DA heuristic, we find that our policy improves as the demand becomes

more asymmetric and for lower penalty costs. Nevertheless, our policy significantly outperforms

the DA policy with a cost benefit ranging from from 3.5% to 23.5%.

In Table 7, we increase the holding costs to (1.2, 1.0, 0.8), thus the problems become more

asymmetric, in both penalty and holding costs. Our policy continues to outperform other heuristics.

This observation persists at higher penalty costs.

25



b = (15, 6, 3) Costs % gap of our policy
h = (1.1, 1, 0.9)

λ1 λ2 λ3 LB Pri DA AF Search LB Pri DA AF

1 1 1 77.1 96.0 93.3 90.8 88.0 14.1% 13.9% 6.0% 3.1%
1.1 1 0.9 79.1 99.6 96.6 93.9 90.8 14.8% 9.7% 6.4% 3.4%
1.2 1 0.8 82.8 106.7 103.2 99.8 96.2 16.2% 10.9% 7.3% 3.8%
1.3 1 0.7 89.4 119.4 119.5 110.2 106.2 18.8% 12.4% 12.5% 3.7%
1.4 1 0.6 105.3 145.8 159.7 134.6 129.3 22.8% 12.8% 23.5% 4.1%

b = (20, 10, 5) Costs % gap of our policy
h = (1.1, 1, 0.9)

1 1 1 90.7 115.3 106.9 107.0 103.3 13.9% 11.6% 3.4% 3.5%
1.1 1 0.9 92.6 119.3 109.8 110.1 106.0 14.5% 12.6% 3.7% 3.9%
1.2 1 0.8 96.3 127.7 117.1 116.3 111.6 15.9% 14.4% 5.0% 4.3%
1.3 1 0.7 103.6 143.1 135.0 128.4 123.0 18.7% 16.4% 9.8% 4.4%
1.4 1 0.6 125.1 175.9 178.1 161.9 152.9 22.2% 15.0% 16.5% 5.8%

Table 6: Cost behavior of our policy all parameters become asymmetric. i.e, backorder costs, holding costs

and the demand distributions are all asymmetric. Available aggregate capacity is 44.

b = (15, 6, 3) Costs % gap of our policy
h = (1.2, 1, 0.8)

λ1 λ2 λ3 LB Pri DA AF Search LB Pri DA AF

1 1 1 78.2 96.2 94.5 91.9 88.8 13.6% 8.3% 6.3% 3.5%
1.1 1 0.9 80.6 100.1 98.2 95.3 92.0 14.1% 8.9% 6.8% 3.7%
1.2 1 0.8 84.6 107.4 105.4 101.6 97.8 15.6% 9.9% 7.8% 3.9%
1.3 1 0.7 91.7 120.3 123.1 112.9 108.0 17.8% 11.3% 13.9% 4.5%
1.4 1 0.6 107.9 146.2 164.0 136.3 130.4 20.8% 12.1% 25.7% 4.5%

b = (20, 10, 5) Costs % gap of our policy
h = (1.2, 1, 0.8)

1 1 1 91.7 114.9 107.8 108.0 103.8 13.3% 10.7% 3.8% 4.1%
1.1 1 0.9 94.1 119.3 111.2 111.5 106.9 13.6% 11.6% 4.0% 4.3%
1.2 1 0.8 98.2 127.8 118.8 118.8 112.9 15.0% 13.2% 5.2% 5.2%
1.3 1 0.7 106.0 143.2 137.0 130.6 124.6 17.5% 15.0% 10.0% 4.9%
1.4 1 0.6 127.2 175.0 182.5 162.4 153.5 20.7% 14.0% 18.9% 5.8%

Table 7: Cost behavior of our policy when parameters, i.e, backorder costs, holding costs and the de-

mand distributions are all asymmetric. The parameters are identical to the Table 6 except for holding cost

parameters that are more asymmetric.

7.8 The Effect of Capacity

In this section, we explore the effect of capacity κ on asymmetric problem scenarios with different

backorder costs, holding costs, and demands. In Tables 8 and 9, we sequentially decrease the

capacity such that the utilization increases from 73.3% (K = 60) to 97.78% (for K = 45) and
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demonstrate that our policy is very efficient in allocating scarce capacity resource amongst the

products.

In Table 8, product 1 has the lowest variability and product 3 has the highest variability. As the

capacity falls from 60 to 45, the relative performance of our policy improves consistently. Against

the priority heuristic, the relative cost advantage of our heuristic improves from 6% to 9%. Against

the DA heuristic, as the capacity gets tighter, the relative advantage increases from 6% to as high

as 46%. Similarly, against the AF heuristic, the performance improves from 0.3% to about 3− 5%.

k = 12, λ = (1.5, 1, 0.5)
b = (15, 6, 3) Costs % gap

h = (1.1, 1, 0.9)

Capacity LB Pri DA AF Search LB Pri DA AF

60 78.7 88.7 86.3 83.8 83.6 6.2% 6.1% 3.3% 0.3%
58 78.9 91.0 89.5 85.8 85.2 8.0% 6.8% 5.0% 0.6%
56 79.4 94.1 94.4 88.6 87.7 10.5% 7.4% 7.7% 1.1%
54 80.3 98.5 99.9 92.9 91.2 13.6% 8.0% 9.6% 1.9%
52 82.1 104.7 108.4 98.8 96.4 17.4% 8.6% 12.4% 2.4%
50 86.1 114.3 121.5 109.0 104.8 21.7% 9.1% 15.9% 3.9%
48 95.2 130.1 144.9 125.4 118.9 24.9% 9.4% 21.9% 5.5%
46 120.2 161.6 197.3 156.1 147.9 23.0% 9.3% 33.4% 5.5%
45 150.0 194.0 262.5 185.7 179.3 19.5% 8.2% 46.4% 3.5%

Table 8: Cost behavior of our policy as the total capacity becomes tighter for asymmetric demand and

costs: Erlang(k, λ) with k = 12 and λ1 = 1.5, λ2 = 1.0, λ3 = 0.5.

We also note that as the capacity gets tighter, the relative difference between our policy and the

lower bound increases. This is due to the weakened nature of the lower bound under high utilization.

When capacity is unlimited the multi-product problem decomposes into N individual newsvendor

problems. In this case, the balancing heuristic is optimal and the lower bound coincides with the

optimal cost. As the capacity gets tighter, the issue of allocating capacity becomes important and

the lower bound benefits from the fact that it allows for costless redistribution of inventories in each

period. In any case, the relative performance of our heuristic continues to improve as the capacity

becomes tighter.

In Table 9, we follow the same schematic as in Table 8, except that the pattern of asymmetric

demands are now reversed. Product 1 has the highest and Product 3 has the lowest variance to

mean ratio. As the capacity falls from 60 to 45, again the performance of our policy improves

consistently. Against the priority heuristic, the relative cost advantage of our heuristic improves
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k = 12, λ = (0.5, 1, 1.5)
b = (20, 10, 5) Costs % gap
h = (1.2, 1, 0.8)

Capacity LB Pri DA AF Search LB Pri DA AF

60 86.6 99.3 96.3 93.9 93.3 7.7% 6.4% 3.2% 0.7%
58 86.9 102.4 100.1 96.7 95.6 10.0% 7.1% 4.8% 1.2%
56 87.5 106.6 104.3 100.3 98.9 13.0% 7.8% 5.5% 1.4%
54 88.8 112.4 110.4 105.9 103.5 16.5% 8.6% 6.7% 2.2%
52 91.5 120.7 119.7 114.2 110.3 20.6% 9.4% 8.5% 3.6%
50 97.2 133.4 133.5 127.3 120.8 24.3% 10.4% 10.5% 5.4%
48 110.1 154.0 159.0 149.5 138.3 25.6% 11.4% 14.9% 8.1%
46 144.5 195.5 216.7 190.6 175.5 21.5% 11.4% 23.5% 8.6%
45 184.3 238.6 290.1 234.9 216.8 17.6% 10.1% 33.8% 8.8%

Table 9: Cost behavior of our policy as the total capacity becomes tighter. The asymmetric demands are

reversed from the previous table

Capacity Priority DA AF Search

60 60 35 24 60 29 16 60 29 16 60 32 20
58 60 36 26 60 29 16 60 29 16 60 33 21
56 60 37 28 64 31 17 60 30 16 60 34 22
54 60 39 32 68 33 18 60 30 17 60 35 26
52 60 41 38 72 35 19 60 31 18 63 37 29
50 60 43 47 82 40 22 60 33 20 66 40 34
48 60 47 64 93 45 25 60 37 24 70 44 47
46 60 52 101 122 59 33 60 46 44 75 49 77
45 60 56 139 150 73 40 60 48 79 77 52 113

Table 10: Base-stock levels under different policies for instances in Table 9.

from 6.4% to 10.1%. Against the DA heuristic, as the capacity gets tighter, the advantage increases

from 3.2% to as high as 34%. Similarly, against the AF heuristic, the performance of our heuristic

improves from 0.7% to about 8.8%, as the capacity becomes tighter. To summarize, under scarce

capacity our approach does 9% or better cost-wise against every extant heuristic.

In Table 10, we show the base-stock levels for the scenarios reported in Table 9. In general,

it appears that the priority policy assigns a significantly higher base-stock for product 3 (which is

cheapest to hold). On the other hand, the DA heuristic chooses inventories such that a significantly

higher base stock is assigned to Product 1. Our Search policy and the AF heuristic both choose

base-stock levels that are in between those chosen under the Priority and the DA heuristics. It

appears that the AF heuristic chooses weakly lower base-stocks for the products, compared to our

policy. These differences are more pronounced as the capacity becomes tighter. It also appears
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that our policy outperforms significantly better than other policies when the capacity is scarce, by

setting up the base-stock parameters appropriately. The difference in the base-stock levels in our

policy and those in the other heuristics may be possibly due to the better allocation approach used

in our policy.

Although it is hard to characterize the structure of the optimal policy decisions, we consider

a simple scenario which illustrates the different decisions made under the policies which we study

in this paper, using the last line K = 45 in Table 9) as an instance. Let the beginning inventory

levels in some period be (70, 70, 80) for the three products. Under the priority policy, we have to

produce 59 units for product 3 and none for products 1 and 2. Due to limited capacity, shortfalls

continue to exist (for product 3). Under the DA heuristic, we have to produce 80 units of product

1, 3 units for product 2 and none for product 3. Even in this case, shortfalls continue to exist, and

surely for product 1, since capacity available is 45 but 80 units have to be produced. Under the

AF heuristic, all items are above their base stock level under the heuristic, so the entire capacity

goes unused. However, under our policy, 33 units of product 3 are produced. There is no shortfall.

In this scenario, the DA and priority heuristics allow for too much shortfall for different products,

and under the AF heuristic, the capacity may go unused (compared to the Search policy). Our

policy tries to find a balance between excessive shortfalls (due to high base-stock levels) and low

utilization (due to low base-stock levels).

7.9 Inference from the Computational Study

• When all product attributes (i.e., demand and costs) are symmetric, our policy and the DA

heuristic are optimal. The AF heuristic is sub-optimal.

• In virtually all of the problem instances we computed, our policy significantly outperforms

all the extant heuristics. The only instances in which the approaches have comparable per-

formances are those instances with low utilization (i.e., amply capacity).

• As the capacity gets tighter, our heuristic consistently outperforms other heuristics. It per-

forms significantly better than the priority heuristic in all cases. It consistently outperforms

the AF heuristic, and by as much as 13% when the products are asymmetric and capacities

are tight. Our performance is also significantly better than the DA heuristic, except for a
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few symmetric cases with low utilization when the two heuristics are comparable. When the

products and demands are asymmetric, it is possible that our policy saves more than 40% in

costs.

8 Concluding Remarks

We have developed an intuitive, theoretically appealing and implementable policy for managing

finite flexible capacity shared by multiple products. To implement our allocation policies, one

just needs to examine their current shortfalls to determine the allocation of capacity amongst

different products. In addition to being simple and intuitive to implement, our policies (a) have

the theoretical appeal of being asymptotically optimal at high service levels and at high utilization

levels, and (b) perform well when flexible capacity is most valuable (i.e., scarce capacity, varying

demands). Nevertheless, there are several challenging questions that are left unanswered. Very

little is known about the structure of the optimal policy when products are asymmetric. Perhaps

benchmarking our policies against the optimal policy is a calibration step in that direction. Another

important factor is the possibility of correlated demand structure among the products. We leave

such directions to future research.
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Appendix

Proof of Lemma 3

Consider the subclass of policies mentioned in the statement of the lemma. Once the base-stock

vector S is chosen for a policy within this class, the policy is entirely specified. The long run

average cost of this policy is
∑N

n=1E[hn · (Sn − V α,n −Dn)+ + bn · (V α,n + Dn − Sn)+]. Since

the distribution of Vα does not depend on the base-stock vector, the expression above is separable

in (S1, . . . , SN ); thus, the optimal value of Sn is simply the minimizer of the “newsvendor-type”

expression within the summation above. The desired result is immediate.

Proof of Theorem 4

By assumption V 1,n
1 = 0 for all n. This establishes statement (i) for t = 1. Under the symmetric

allocation rule, if the distribution of V1
t is symmetric across n for some t and the distribution of

Dn
t is also symmetric across n, then the distribution of V1

t+1 will also be symmetric. Statement (i)

follows for all t by induction. Statement (ii) is a direct consequence of statement (i).

Proof of Lemma 6

Without loss of generality, we assume that the priority order (1), (2), . . . , (N) is 1, 2, . . . , N . When

the capacity is not binding (i.e.
∑N

j (W j) ≤ κ), the shortfalls after ordering are zero under both

rules (for any m). Thus, the statement holds for any m. Similarly, if the shortfall before ordering,

W j , is zero for any j, then the shortfalls after ordering V P,j and V αm,j are both zero. Thus, it is

sufficient to consider the case where W is strictly positive in every component.

When capacity is binding, there exists some k, 1 ≤ k < N such that
∑k

1 W
j ≤ κ and∑k+1

1 (W j) > κ. Then, under the priority policy V P,j = 0 ∀ j = 0, . . . , k, V P,k+1 = W k+1 +

κ −
∑k

1 W
j , and V P,j = WP,j ∀ j = k + 2, . . . , N . Let us define β = W k+1 + κ −

∑k
1 W

j , i.e.

β = V P,k+1.
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Let M be large enough that W k+2/Mk+1 ≥ W k+3/Mk+2 ≥ . . . ≥ WN/MN−1. Let ε̃ ∈ (0, ε/k)

and let ε̃ ≤ min{W 1, . . . ,W k, β/k}. Moreover, let M be large enough that ε̃ ≥ W k+1/Mk, ε̃/M ≥

W k+1/Mk, . . ., ε̃/Mk−1 ≥W k+1/Mk and (β − k · ε̃)/Mk ≥W k+1/Mk. (All the inequalities above

except the first and the last are redundant - but we present them here for ease of verification of

our next claim). These inequalities ensure that even if the first k + 1 components of the shortfall

vector before ordering were reduced to (ε̃, . . . , ε̃, β−k · ε̃), the weighted balancing rule defined by the

vector αm prefers to allocate the next incremental amount of capacity to the first k + 1 products

and not the products in {k + 2, . . . , N}.

It is now easy to verify that Vαm satisfies the following inequalities for all m ≥ M : V αm,j =

W j = V P,j for all j ∈ {k+ 2, k+ 3, . . . , N}, V αm,j ∈ [0, ε̃] = [V P,j , V P,j + ε̃] for all j ∈ {1, 2, . . . , k},

and V αm,k+1 ∈ [β − k · ε̃, β] = [V P,k+1 − k · ε̃, V P,k+1]. The proof of the lemma is complete from

the fact that ε̃ ≤ ε/k.
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Online Technical Appendix

Proof of Theorem 5

Lemma 3 establishes the optimality of the base-stock vector S1∗ for policies in ΠBS−B that use the

weight vector 1. It remains to show that the policy in ΠBS−B defined by the base-stock vector S1∗

and the weight vector 1 is an optimal policy when all policies in Π are considered.

Let us first consider the finite horizon discounted cost problem with a discount factor γ ∈ (0, 1]

and a planning horizon of T periods, that is, the problem of minimizing E[
∑T

t=1 γ
t · Ct] over Π.

This finite horizon dynamic program can be represented through the cost-to-go functions {fγt,T :

t = 1, . . . , T} as follows:

fγt,T (x) = min
y

N∑
n=1

(
hn · E[(yn −Dn)+] + bn · E[(Dn − yn)+]

)
+ γ · E[fγt+1,T (y −D)]

s.t. y ≥ x and

N∑
n=1

yn ≤
N∑
n=1

xn + κ ,

where fγT+1,T (x) := 0 for all x.

It is fairly easy to show using induction that under Assumption 1, the function fγt,T is convex

and symmetric. Using standard dynamic programming arguments, we can establish the pointwise

convergence of the finite horizon cost-to-go functions {fγ1,T (x)} to {fγ(x)} the cost-to-go function

of the infinite horizon, discounted cost dynamic program (defined for γ ∈ (0, 1)) represented below:

fγ(x) = min
y

gγ(y) (3)

s.t. y ≥ x and

N∑
n=1

yn ≤
N∑
n=1

xn + κ , (4)

where gγ(y) =
∑N

n=1 (hn · E[(yn −Dn)+] + bn · E[(Dn − yn)+]) + γ · E[fγ(y −D)]. The infinite

horizon discounted cost optimal policy is defined by a selector yγ∗(x) such that for every x, the

vector yγ∗(x) is a solution to the above minimization problem. The convergence of {fγ1,T (x)} to

{fγ(x)} ensures that gγ is also convex and symmetric. The convexity and symmetry of gγ implies

the existence of a vector Sγ∗ such that (a) it minimizes gγ(y) and (b) all its components are

identical; let us denote this identical base-stock value for all components as Sγ∗.

Next, we claim that the symmetric allocation rule applied in combination with the base-stock

vector Sγ∗ is an optimal policy for the infinite horizon, discounted cost problem defined in (3)-(4)

when x ≤ Sγ∗. There are two cases to study. The first case is the following: x is such that x ≤ Sγ∗
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and
∑N

n=1 x
n + κ ≥

∑N
n=1 S

γ∗. From such an inventory state x, before ordering, we know that it

is feasible to reach Sγ∗ after ordering. Moreover, this action is optimal since Sγ∗ minimizes gγ(y).

The second case is the following: x is such that x ≤ Sγ∗ and
∑N

n=1 x
n + κ <

∑N
n=1 S

γ∗. Convexity

of the function gγ(y) ensures that there is an optimal solution such that
∑N

n=1 y
n =

∑N
n=1 x

n + κ.

Moreover, it is easy to show the following inequality by using the convexity and symmetry of gγ(·):

Let y and ỹ be two vectors such that
∑N

n=1 y
n =

∑N
n=1 ỹ

n = N · y for some constant y, and such

that, for every n, yn ∈ [ỹn, y] if ỹn ≤ y and yn ∈ [y, ỹn] if ỹn ≥ y. Then, gγ(ỹ) ≥ gγ(y). In

words, this inequality asserts that, given two inventory vectors ỹ and y which are equal in terms

of their aggregate inventories, the vector y which is more symmetric (i.e. whose components are

closer to the average y) is preferable with respect to the cost function gγ(·). Since all products have

the same mean demands per period, notice that the policy of using the symmetric allocation rule

and the base-stock vector Sγ∗ leads to the “most symmetric” vector y among all vectors such that

(4) holds. Thus, the inventory vector y chosen by this policy is optimal over all y satisfying the

constraints above. This completes the proof of the claim.

Now we return to the infinite horizon average cost problem. Schäl (1993) shows that, under

certain conditions, the sequence of infinite horizon discounted cost optimal policies converges to an

infinite horizon average cost optimal policy as the discount factor γ approaches 1. A straightforward

extension of Huh et al. (2011) leads to Schäl’s conditions for our multi-product problem, and details

are available on request.

Thus the above mentioned convergence of discounted cost optimal policies to an average cost

optimal policy holds in our case. This implies that there exists a vector S∗, in which all components

are identical, such that the symmetric allocation rule applied in combination with the base-stock

vector S∗ is an average cost optimal policy. Finally, we know from Lemma 3 that, within ΠBS−B,

the optimal base-stock vector corresponding to the weight vector 1 is S1∗. Thus, S1∗ is a valid

choice for S∗; this completes the proof.

Proof of Lemma 7

The first inequality is trivial to establish because the cost incurred by any policy in any period when

the backorder costs are given by b exceed the corresponding quantity when all backorder costs are

min(b). The second inequality follows from the definition of C∗(h,b) and C1∗(h,b) as the optimal

cost over all policies and the cost of the optimal weighted balancing policy, respectively. We now

show the third inequality. From Theorem 5, we know that

C1∗(h, avg(b)) = C∗(h, avg(b)) .
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Observe that C1∗(h,b) is a constant with respect to permutations to b due to the symmetric

demand assumption and the symmetric nature of the symmetric allocation rule. The average of all

possible permutations of b is

avg(b) · (1, 1, . . . , 1) .

Since the single period function is linear with respect to b for any given state and action, it is easy

to show that, for any policy π, Cπ(h,b) is concave with respect to b. This implies that

C1∗(h,b) ≤ C1∗(h, avg(b)) .

Recalling that C1∗(h, avg(b)) = C∗(h, avg(b)), we have

C1∗(h,b) ≤ C∗(h, avg(b)) .

Proof of Theorem 8

The first statement follows directly from Lemma 7. We now prove the asymptotic limit result by

invoking and proving two related results.

Lemma 12 (Huh et al. (2009)). Let X be a random variable such that M = sup{x : P (X ≤ x) < 1}

and limx↑M
E[X−x | X>x]

x = 0, where M ∈ <+ ∪ {∞}. Then,

lim
β→∞

(
L(h, β · b′ , X)

L(h, β · b,X)

)
= 1 for all (h, b

′
, b) .

Note that any probability distribution with an increasing failure rate (IFR) satisfies the con-

dition in Lemma 12. Next, we show that, for every product, the convolution of the steady state

shortfall and demand distributions satisfies the condition in Lemma 12.

Lemma 13. Under Assumption 2, the following statement holds for all j ∈ {1, . . . , N}: The

convolution of V 1,j
∞ and Dj is unbounded, i.e. P (V 1,j

∞ + Dj < x) < 1 for all x. Moreover, if the

common marginal distribution of the random variables {Dj} is an IFR distribution, then,

lim
x→∞

E[(V 1,j
∞ +Dj)− x | (V 1,j

∞ +Dj) > x]

x
= 0 for all j .

Proof: Recall that P (D > κ) > 0. Since the steady state distribution of the aggregate

shortfall V∞ is the same as that of the waiting time in a G/D/1 queue, it is easy to verify that

the random variable V∞ is unbounded. Under symmetric demands, we know from Theorem 4 that

the distributions of all the random variables V 1,j
∞ are identical. By definition, V∞ has the same

3



distribution as the convolution
∑N

j=1 V
1,j
∞ . Since V∞ is unbounded, it follows that the random

variables V 1,j
∞ are also unbounded; this implies that the random variables V 1,j

∞ + Dj are also

unbounded which proves the first part of the lemma. We now proceed to the second part.

It is well known (see Bryson and Siddiqui (1969)) that if a non-negative random variable X has

a finite mean and an IFR distribution, then its mean residual life E[X −x|x > x] is decreasing and

therefore bounded by the mean, E[X]. Thus, for every j, we know that the mean residual life of

Dj is bounded. Next, we use conditional expectations and observe that

E[(V 1,j
∞ +Dj)− x | (V 1,j

∞ +Dj) > x] = E
V 1,j
∞

[
EDj [v +Dj − x | Dj > x− v]|V 1,j

∞ = v
]
.

Dividing both sides by x and taking the limit as x→∞, we obtain

lim
x→∞

E[(V 1,j
∞ +Dj)− x | (V 1,j

∞ +Dj) > x]

x

= lim
x→∞

E
V 1,j
∞

[
EDj [v +Dj − x | Dj > x− v]|V 1,j

∞ = v
]

x

≤ lim
x→∞

E
V 1,j
∞

[(
1(x ≥ v) · E[Dj ] + 1(x < v) · (E[Dj ] + v − x)

)
|V 1,j
∞ = v

]
x

,

where 1(·) is the indicator operator; the inequality follows from the fact that the mean residual life

of Dj is bounded by its unconditional mean. The expression on the right side of the inequality can

be bounded above by

lim
x→∞

E[Dj + V 1,j
∞ ]

x
= 0 because E[Dj ] <∞ and E[V 1,j

∞ ] <∞ (since E[D] < κ by assumption).

This proves the desired result. 2

We know from (1) that

C∗(h, avg(b)) = N · L(h, avg(b), V 1,1
∞ +D1) and

C∗(h,min(b)) = N · L(h,min(b), V 1,1
∞ +D1) .

Therefore, (
C1∗(h,b)

C∗(h,b)

)
≤

(
L(h, avg(b), V 1,1

∞ +D1)

L(h,min(b), V 1,1
∞ +D1)

)
.

The desired asymptotic result now follows directly from Lemma 12 and Lemma 13. This completes

the proof of Theorem 8.
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Proof of Lemma 9

Proof. First, we observe that

C∗(h,b, κ) ≥ C∗(h, b, κ) , if 0 < h ≤ hj ∀ j and 0 < b < bj ∀ j , (5)

where C∗(h, b, κ) is the optimal cost of a system in which all products have the same holding cost

h and the same backorder cost b. Thus, it suffices to show that, for any h > 0 and b > 0,

lim
κ↓µ

C∗(h, b, κ) =∞ .

Next, let us define V∞(κ) as the steady state version of the aggregate shortfall process {Vt(κ)}

defined by the recursion Vt+1(κ) = (Vt(κ) +D − κ)+ (recall that D =
∑N

j=1D
j). We claim that

C∗(h, b, κ) ≥ min
S
h · E[(S − V∞(κ)−D)+] + b · E[(D + V∞(κ)− S)+] . (6)

The proof of the claim is the following: Consider any feasible policy in the multi-product system.

We can use this policy to construct a feasible policy in the “aggregate system” whose optimal long

run average cost is represented on the right side of (6) such that the cost in the latter system (and

therefore, the long run average cost) is smaller than that in the former system every period. This

is done by ordering, in the latter system, the sum of the quantities ordered for all the products in

the former system – the fact that the cost in the latter system is smaller in every period follows

from the inequalities

N∑
j=1

(xj − dj)+ ≥

 N∑
j=1

(xj − dj)

+

and
N∑
j=1

(dj − xj)+ ≥

 N∑
j=1

(dj − xj)

+

.

This proves the claim. Thus, it only remains to show that

lim
κ↓µ

min
S
h · E[(S − V∞(κ)−D)+] + b · E[(D + V∞(κ)− S)+] =∞.

To show this, we first note that replacing D by its expectation, µ, in the expression within the limit

above we obtain a lower bound on that expression (this is a consequence of Jensen’s inequality and

the convexity of the function (x)+). Letting S̃ = S − µ, it is sufficient to show that

lim
κ↓µ

min
S̃
h · E[(S̃ − V∞(κ))+] + b · E[(V∞(κ)− S̃)+] =∞. (7)
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Next, observe that the recursion for {Vt(κ)} is the same as that for the waiting time process for a

G/G/1 queue in which the inter-arrival times are deterministic and equal to κ and the service time

for the tth customer is Dt. We know from Kingman (1962) that the distribution of the random

variable [ (κ−µ)
σ2 ] · V∞(κ) converges to an exponential distribution with mean 1/2, i.e.,

lim
κ↓µ

P

(
(κ− µ)

σ2
· V∞(κ) ≥ z

)
= e−2z , for all z ≥ 0 ,

where σ2 is the variance of the aggregate demand D. We can verify using straight forward calculus

that this implies that

lim
κ↓µ

min
S′

h · E
[
(S′ − (κ− µ)

σ2
· V∞(κ))+

]
+ b · E

[
(
(κ− µ)

σ2
· V∞(κ)− S′)+

]
= (h/2) · ln ((b+ h)/h) . (8)

It is easy to verify that the desired equality in (7) follows directly from (8).

Proof of Theorem 10

Proof. The second statement follows directly from the first statement and Lemma 9. We proceed

to show the first statement. Our plan is to find an upper bound on CP (h,b, κ) and a lower bound

on C∗(h,b, κ) and show that the difference between these bounds is finite for all κ.

Let S(κ) be defined as arg minS h
N · E[(S −D − V∞(κ))+] + bN · E[(D + V∞(κ)− S)+]. Now,

consider a policy π which uses the same priority rule as P but uses the following non-optimal

base-stock levels:

Sj = 0 for all j < N and SN = S(κ) .

Let Cπ(h,b, κ) (Cπ,N (hN , bN , κ)) denote the long run average cost for the system (product N)

under π given the respective parameters. Since P uses the optimal base-stock levels under the

given priority allocation rule and π does not, we obtain the following relations:

CP (h,b, κ) ≤ Cπ(h,b, κ)

=
N−1∑
j=1

bj · E[Dj + V P,j
∞ ] + Cπ,N (hN , bN , κ) . (9)

The equality above follows from the fact that under π, there is never any inventory of products 1

through N − 1 on hand and from the fact that the shortfall process under π is the same as that
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under P. From (9) and Assumption 3, it follows that

CP (h,b, κ) ≤ b1 ·
N−1∑
j=1

(
E[Dj + V P,j

∞ ]
)

+ Cπ,N (hN , bN , κ)

= b1 ·
N−1∑
j=1

(
E[Dj + V P,j

∞ ]
)

+ hN · E[(S(κ)−DN − V P,N
∞ (κ))+] + bN · E[(DN + V P,N

∞ (κ)− S(κ))+] .(10)

The inequality above provides an upper bound on CP (h,b, κ).

Next, we proceed to identify a lower bound on C∗(h,b, κ). By Assumption 3, we have

C∗(h,b, κ) ≥ C∗(hN , bN , κ) . (11)

Now, observe that C∗(hN , bN , κ) is the optimal cost of a multi-product inventory system in which

all products have identical holding and shortage costs. We have shown in the proof of Lemma 9

that this quantity exceeds the optimal cost of a single product inventory system with a holding

cost hN , backorder cost bN , capacity κ and demand distribution D. That is,

C∗(hN , bN , κ) ≥ min
S
hN · E[(S −D − V∞(κ))+] + bN · E[(D + V∞(κ)− S)+] ,

= hN · E[(S(κ)−D − V∞(κ))+] + bN · E[(D + V∞(κ)− S(κ))+] . (12)

Let us define V
P,[1,N−1]
∞ as

∑N−1
j=1 V P,j

∞ and D[1,N−1] as
∑N−1

j=1 Dj . Now, comparing (10) and (12)

and using (11), we can write

CP (h,b, κ)− C∗(h,b, κ)

≤ b1 ·
N−1∑
j=1

(
E[Dj + V P,j

∞ ]
)

+ hN · E[D[1,N−1] + V P,[1,N−1]
∞ (κ)]

= (b1 + hN ) · E[D[1,N−1] + V P,[1,N−1]
∞ (κ)] . (13)

Notice that V
P,[1,N−1]
∞ (κ) is the steady state distribution of the stochastic process {V P,[1,N−1]

t (κ)}

which evolves according to the recursion

V
P,[1,N−1]
t+1 (κ) =

(
V
P,[1,N−1]
t (κ) +D

[1,N−1]
t − κ

)+
.
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Since µ > E[D[1,N−1]], it is easy to see that V := limκ↓µE[V
P,[1,N−1]
∞ (κ)] exists and is finite. Thus,

we obtain CP (h,b, κ) − C∗(h,b, κ) ≤ M := (b1 + hN ) · E[D[1,N−1] + V ] < ∞ for all κ > µ .

This completes the proof of the theorem.

Proof of Lemma 11

Consider any non-anticipatory policy π. Let yπt denote the aggregate inventory level after ordering

in period t, when this policy is followed. Similarly let yπt (xπt ) denote the vector of inventory

levels after (before) ordering in period t and let Cπt be the cost incurred in that period. Thus,

E[Cπt ] =
∑N

n=1G
n(yπ,nt ). Therefore, we know from the definition of F1 that

E[Cπt ] ≥ F1(yπt ) .

⇒ inf
π∈Π

lim
T→∞

sup
E
[∑T

t=1C
π
t

]
T

≥ inf
π∈Π

lim
T→∞

sup
E
[∑T

t=1 F1(yπt )
]

T
.

Note that Π is the class of non-anticipatory policies satisfying the constraints yπt ≥ xπt and∑N
n=1 y

π,n
t ≤

∑N
n=1 x

π,n
t + κ, in every period. Let Π′ denote the larger class of policies which

are non-anticipatory and require that only the second constraint, i.e. the capacity constraint, is

satisfied in every period. This implies that

inf
π∈Π

lim
T→∞

sup
E
[∑T

t=1 F1(yπt )
]

T
≥ inf

π∈Π′
lim
T→∞

sup
E
[∑T

t=1 F1(yπt )
]

T
.

The quantity on the right side of the above inequality is nothing but the long run average optimal

cost for a single product inventory problem with a capacity limit of κ and an expected single period

cost F1(·), which is a convex function. We know from Federgruen and Zipkin (1986) and Huh et al.

(2011) that a base-stock policy is optimal for this problem. Thus, we obtain

inf
π∈Π′

lim
T→∞

sup
E
[∑T

t=1 F1(yπt )
]

T
= min

S
E[F1(S − V∞)]

using the strong law of large numbers for Markov Chains (see Resnick 1992 for details). This leads

to the desired result that

inf
π∈Π

lim
T→∞

sup
E
[∑T

t=1C
π
t

]
T

≥ min
S
E[F1(S − V∞)] .

8


