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Abstract

In many services, consumers must rely on experts to identify the type of service they need.

In such expert services, diagnosis is a crucial step in which the expert identifies the type of

problem and also provides the corresponding treatment. The asymmetry of information between

the expert and the consumer leads to inefficiencies in the form of over-treatment: The expert

may have an incentive to not reveal the true diagnosis to the consumer in order to sell more

expensive services. The expert may extract more revenue through the expensive treatment, but

providing such a treatment also requires more service capacity and time. Hence, overtreatments

impose longer delays and higher waiting costs for consumers. We find that congestion acts as a

natural “fraud cost” and mitigates expert cheating and induces honesty, thus increasing social

value. Experts with high capacity utilization are less prone to overtreat. To commit to an

honest diagnosis, the expert has to charge high prices and limit demand for his services. Thus,

low prices may serve as a signal for overtreatment.

Keywords: Queueing Games, Diagnosis, Overtreatment, Honesty, Service Specialization, So-

cial Value.

1 Introduction

In a wide variety of services, consumers cannot self-diagnose their problems; hence, they cannot

identify the type of service that will address their needs. As a result, they rely on knowledgeable

experts for diagnosis, who are also often the providers of those service. These services are often

referred to as expert services. Medical services, repair services, legal advice, and consulting services

all fall into the broad category of expert services, in which a diagnosis precedes the actual provision

of the service. In these settings, the experts are better informed about the potential problem types

and the services required to treat those problems. Upon diagnosing and identifying the problems,

the experts gain an informational advantage over the consumers.
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In recommending a service, an expert may not reveal the true diagnosis and may exploit his

informational advantage in order to sell more services (that a consumer may not need). As a

consequence, even after consumption, consumers are often unsure about the necessity of the rec-

ommended service, and its true benefit. Darby and Karni (1973) first introduced the term credence

good, to refer to goods whose impact on consumers’ utility is not completely revealed even after

consumption.

Since the experts who diagnose are also often the providers of the associated service, there are

incentives to provide false recommendations, leading to inefficiencies. The presence of aggressive

diagnosis and overtreatment in services has been of significant interest to firms, consumers, policy

makers and society as a whole.

In particular, in the health care industry, such incentives in diagnosis and treatments have

received enormous recent interest in both academic literature and press. In the book Overtreated,

Brownlee (2011) argues how several billion dollars of unnecessary tests and procedures are ordered

in the United States due to perverse incentives. In a recent article, Gawande (2015) discusses

how paying physicians for the quantity of care leads to pervasive overtreatment and unnecessary

care. Welch and Passow (2014) estimate that 22% of all screen-detected invasive breast cancers are

overdiagnosed. Sometimes, aggressive (rather, than false) diagnosis also leads to overtreatment. In

a recent paper, Ong and Mandl (2015) estimate that such overdiagnoses of invasive breast cancer

and ductal carcinoma in-situ (DCIS) cost the US health care system $1.2 billion annually. Based

on 30 years of data, medical research (Bleyer and Welch 2012, Welch and Black 2010) argues

that aggressive screening for mammography is associated with the harm of overtreatment caused

by both false-positive mammograms and breast cancer overdiagnosis. In fact, the US Preventive

Services Task Force has recommended against routine mammography screening for women ages

40–49 (USPSTF, 2009).

Such overtreatment concerns have been documented in other industries/instances of expert

services. Gruber and Owings (1996) note a significant rise in cesarean delivery rates mainly due

to high reimbursement pressures. Schneider (2012) estimates that unnecessary auto-repairs were

recommended in 27% of all visits, using a field experiment. Also see Wennberg et al. (1982),

Dranove (1988), Gruber and Owings (1996), and Delattre and Dormont (2003) for the evidence of

physician-induced demand in various medical settings.

The extant academic research in operations literature has not addressed the impact of the

capacity and service delays on expert diagnosis and overtreatment issues. Typically, when experts

direct consumers toward more expensive services to extract higher revenues, the action comes at

a cost to the society, and sometimes to the expert. Overtreatment creates a greater requirement

of capacity and a tighter resource utilization. Often, the expensive services require more time

which is a valuable resource for both experts and consumers. Further, longer service times result

in long waiting times, which may deter some consumers from procuring the service from a service
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provider. In this paper, we focus on an expert’s pricing and diagnostic decisions in a market with

with self-interested delay-sensitive consumers.

In services where waiting is required, the experts’ diagnostic strategy and the aggregate pro-

curement decisions of all consumers in the market may increase waiting for all other consumers.

Therefore, even though overtreatment may increase revenues for the service provider, it also inten-

sifies the congestion in the system, as the expert may provide consumers with longer services that

the consumers do not need. We investigate how capacity and congestion concerns may mitigate

expert cheating (service overprovision) and increase the efficiency of service provision.

We characterize the role of service capacity in welfare maximizing operations. In particular,

we identify the market conditions for specialization and prioritization of problems. We show that,

due to congestion considerations, it might be socially optimal to specialize in treating “minor”

problems.

We show that honest price discrimination and socially efficient service can indeed occur and how

they are driven by driven by workload considerations. For the expert to achieve efficient service

provision, the demand for his services has to be large enough. An expert with excess capacity is

more likely to cheat, as congestion costs are diminished under low utilization. As a result, service

over-provision becomes less costly.

If the service value from the different treatment/service plans are disparate, it becomes harder

for the service provider to signal honest diagnosis. In such cases, service over-provision becomes an

unavoidable feature of the market.

2 Related Literature

Our work builds on the literature on (i) queuing games, specifically service value and time depen-

dency literature, and (ii) the economics of credence goods in the context of queueing operations.

The research on credence goods originates from Darby and Karni (1973), who study the impact

of market conditions on the equilibrium level of fraud in markets where consumers’ utility has not

been revealed even after consumption. Several papers (Wolinsky (1993), Pesendorfer and Wolinsky

(2003)) note that overtreatments continue to occur in competitive settings. Fong (2005) finds

that expert cheating arises as a substitute for price discrimination, and experts cheat on high

valuation, high cost customers. Dulleck and Kerschbamer (2006) find that liability and verifiability

are important institutional factors determining experts’ behavior, while reputation and competition

are important market factors.

Nevertheless, very little is known about the impact of resource constraints (service capacity,

service delays) on experts’ diagnostic decisions to overtreat. Emons (1997) in a deterministic model,

finds that experts earn positive revenues through honesty only if the market demand exceeds market

capacity. Emons (2001) shows that an expert can signal an honest diagnosis either by setting the
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capacity exactly equal to the market demand or by charging a fixed admission price. However,

in many operational settings in which the arrivals and service times are stochastic, and service

capacities are fixed, these findings do not hold. We contribute to the literature by investigating the

impact of service delays, and negative externalities on expert diagnosis behavior.

In the credence literature stream, committing false diagnosis is typically costless. For an ex-

ception, see Alger and Salanie (2006) where the fraud is costly but exogenous. In contrast, in our

model, the fraud costs emerge endogeneously through waiting costs. Pitchik and Schotter (1987)

find that experts become more honest as the price gap between major and minor repairs decreases.

We find that congestion effects alter the finding. In congested stochastic environments, prices serve

two different but (occasionally) contradictory purposes: they signal the credibility of expert’s diag-

nosis, and they control congestion in the service system.We show that congestion tempers cheating

behavior.

The research in Operations Management on credence services is nascent. The effect of workload

on cheating/service inducement is discussed in Glazer and Hassin (1983). Debo et al (2008) studies

how queue lengths to “service inducement” in a monopolistic market. The service provider can

exploit the differences in the state of arrival, to pad additional services and extract higher revenues

whenever the server is idle. We show how cheating can emerge even without state dependencies,

and even with procedural verification, when the consumer is aware that a process was truly done.

Finally, our paper contributes to the recent renewed interest in queueing games (beginning with

Naor 1969; see survey by Hassin and Haviv 2004). Specifically, we focus on the recent research in

queues where the service value increases in service time. This service value-time relationship has

been consistently observed in health care settings and diagnostic services: For instance, Alizamir

et al (2013) and Wang et al (2009) focus on diagnostic services in congested system where the

outcome quality improves with every additional diagnostic step (that adds to overall service time).

We refer the reader to significant advances in different settings made in research by Alizamir et al

2013 (Diagnostic accuracy), Anand et al 2011 (Tradeoffs in static settings), Dai et al 2012 (Medical

insurance pricing), Hasija et al 2009 (Work expansion), Lee et al 2012 (Gatekeeping and expert

referrals), and Kostami and Rajgopalan 2014 (Tradeoffs in dynamic settings). This stream of

literature has not examined cheating and overtreatment in services.

We find that such quality-service time dependency is critically inherent to expert services, and is

critical to the understanding the drivers of overtreatment in expert services. For instance, we show

how the social welfare planner may prioritize low-value minor services due to time dependencies

of such services. To our knowledge, very little is known about the operational impact of service

capacity and service value-time dependencies, on the diagnostic decisions, overtreatment and pricing

in such expert services. Our paper attempts to fill this gap.
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3 Model of Expert Service

Consumer Information. We consider an expert providing service to a market of self-interested,

risk-neutral and utility maximizing consumers. Each consumer in the market has a problem that

requires treatment. We assume that consumers’ problems fall into two categories: major problems

(type M problems), which occur with probability θ ∈ (0, 1) in the population, and minor problems

(type m), which occur with probability θ̄ , 1 − θ. The presence of both types of problems is

recognized by the same symptoms. As a result, the consumer cannot identify the type of problem

himself.

Since consumers can observe the existence of a problem through exhibited symptoms, but cannot

diagnose the underlying type of problem, they also cannot identify the proper service that will

resolve their problem. Therefore, for both diagnosis and treatment, they rely on a knowledgeable

service provider, whom we henceforth simply address as the expert. The resolution of a minor

problem provides a consumer a value of vL, while the resolution of a major problem provides a

value of vH(> vL).1

The consumers are ex ante homogeneous, i.e., they have the same prior on the incidence of

the problem θ. Thus, the ex ante expected value from the treatment of their problem is v ,

θvH + (1 − θ)vL. However, upon diagnosis by the expert, they will have different valuations and

updated beliefs based on the service recommendations that they receive from the expert. Specifically

a consumer with a major problem diagnosis would have higher value for the problem to be fixed.

Consumer Arrival, Diagnosis and Service Recommendation. Consumers arrive to the

server according to a Poisson process at an exogenously specified mean rate of Λ, which we refer

to as the potential demand in market, or simply as market size. Upon the consumer’s arrival, the

expert performs an immediate diagnosis2, and learns (i.e., identifies to himself) the problem type.

While the expert’s (internal) diagnosis is always accurate, his service recommendation, d, need not

be. In other words, the expert does not necessarily reveal his true diagnosis to the consumer when

he recommends a treatment. Thus, once the diagnosis is completed, the service provider has an

informational advantage over the consumer.

For each consumer, following up on his diagnosis, the expert also offers service to treat the

diagnosed problem. When waiting for service, each consumer incurs a waiting cost of c per unit of

time spent in the system. The expert sets the price of the minor treatment at pL and the price of

the major treatment at pH , which are both public information. The true diagnosis is not revealed.

1This setting is equivalent to a setting in which a consumer incurs a higher cost when major problem is left
untreated compared to untreated minor problem.

2See related paper on gatekeeper diagnosis by Lee, Pinker and Shumsky (2012), where the diagnosis is also
instantaneous. Minor problems (below a threshold complexity) are handled by the gatekeeper. More complex (and
mistreated) problems are handled by the expert in that model. There is no incentive to overtreat in their model
because mistreated and expert-retreated problems are costly.
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The consumers, being rational, are aware of the expert’s incentive for cheating.

There are economies of scope between the diagnosis and the service. For instance, providing the

service might require the same equipment or facility used for the diagnosis. Therefore, as typically

observed in practice, the same expert provides both the diagnosis and the service.

Service Value and Time Dependency. The expert recommends/provides one of the two types

of services: a minor treatment L or a major treatment H. The service duration for each type of

service is stochastic and exponentially distributed. For consumers with minor problems (m), the

minor treatment of mean duration τL is sufficient to treat the problem. For consumers with major

problems (M), a major treatment of mean duration τH is necessary to resolve the problem. The

major treatment resolves both minor and major problems. Hence, its valuation is higher, i.e.,

vH > vL, but its duration is also longer, i.e., τH > τL.

We assume diminishing marginal returns in value accrued during service time, i.e., vH/τH ≤
vL/τL. The diminishing marginal value assumption is consistent with quality-speed trade-off lit-

erature (see Anand et al 2011). Our conclusions continue to hold even when this assumption is

relaxed. In fact, overtreatment becomes more likely if marginal value does not diminish in time.

We assume that the treatment times are exponentially distributed, but our conclusions continue

to hold as long as the service times follow an independently and identically distributed general

distribution.

Finally, the expert’s services are verifiable; i.e., upon the completion of the service, consumers

learn the type of service they received and can also verify whether their problems were treated (for

example, it is easy to verify that a complicated additional tax document was completed and filed,

or an MRI scan was done). Consumers pay the service fee only after their problems are treated.

After their problems are treated, the consumers may still not know what type of problem they

had in the first place, and whether the provided service was indeed the appropriate service to treat

their problem. In particular, a consumer who received a major treatment may have had a minor

problem and there is no evidence to prove or disprove the need for the recommended procedure,

after the fact. If the expert recommends minor treatments to fix major problems, the consumer

problems remain unresolved, which forces the expert to lose resources (time) without accruing

revenues.

Information Asymmetry and Honesty. On diagnosis, the expert gains information about the

customer type, which the customer does not know himself. This information asymmetry arising

upon the diagnosis gives the expert an opportunity to over-sell services by prescribing a major

treatment to consumers with minor problems. Let αi, i ∈ {m,M} be the probability that the ex-

pert recommends the major treatment H to a consumer with problem type i. Since consumers pay

the service fee only on the resolution of their problem, the expert’s services are liable. As minor
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treatment does not treat major problems, its provision to consumers with major problems would

not any yield any revenue. Hence, due to service liability, we have αM = 1. In other words, the

expert does not gain from providing a minor service to a consumer with major problem. It does

not resolve the consumer’s problem, and no revenue is accrued.

Nevertheless, minor problem consumers may continue to be over-treated with probability αm.

We define an honest diagnostic strategy to the diagnostic strategy without any over-treatment,

i.e., αm = 0. Henceforth, we refer to the proportion of consumers for whom major treatment is

recommended, χ, as the expert’s diagnostic decision variable. Clearly, χ = θ + (1 − θ)αm. Also

note that χ ≥ θ since αM = 1. Depending on the diagnosis strategy, consumers receiving the

recommendation of major problem, may have different problem types.

Expert’s Decisions. The expert chooses prices (pL, pH) for the treatments and adopts diag-

nostic strategy χ to maximize his revenues, based on consumer’s utility maximizing queue joining

decisions. We model the expert’s revenue maximization problem as a two-stage game: First, the

expert sets the prices (pL, pH) for his services and announces it to the market. Then, the expert

and arriving consumers play the diagnosis and queue joining game. We first focus on the diagnosis

and queueing subgame, and then the pricing game.

Consumer Decisions. On receiving the diagnosis (d ∈ {L,H}), every consumer decides whether

to procure the prescribed treatment (i.e., join the service) or seek an alternate option (i.e., balk),

based on the prices pL and pH , her belief about the service provider’s diagnosis decision χ and the

expected delay W . Note that a consumer only knows the service recommendation, d, and observes

the posted prices pL and pH . However, the consumer can deduce the expert’s diagnostic strategy

and the resulting expected waiting time in equilibrium from the prices set by the provider and the

market size.

Absent additional information, all consumers that are recommended the same treatment have

the same updated beliefs. Consumers who get different recommendations will join with different

probabilities. For sure, a consumer getting a major treatment recommendation, is concerned about

the possibility of overtreatment, and hence, all else equal, less likely to join. Thus we focus on

symmetric joining probabilities, conditional on the recommendation: βL , β(pL, pH |d = L) and

βH , β(pL, pH |d = H).

Service Time Distribution. Consumers joining the queue after receiving a recommendation,

will face different service times based on the recommendation they received. Therefore the ex ante

expectation of the service rate of the system is endogenously determined by the expert’s diagnostic

strategy, χ, and consumers’ service procurement decisions βL and βH . For a given strategy profile
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(χ, βL, βH), the unconditional service time, τ , has the following hyper-exponential distribution:

τ =

{
Exponential with mean τL w.p. βL(1− χ)/(βL(1− χ) + βHχ)

Exponential with mean τH w.p. βHχ/(βL(1− χ) + βHχ)
(1)

with mean and variance,

E[τ ] = (βL(1− χ)τL + βHχτH)/(λL + λH)

V ar[τ ] =
(
(χβHτH − (1− χ)βLτL)2 + 2χ(1− χ)βLβH(τ2

L + τ2
H)
)
/(βL(1− χ) + βHχ)2.

Expected Waiting Time. The expert’s diagnosis and pricing policy, and the consumer recommendation-

dependent joining rates all affect the congestion in the system. The expected time in the system

is the sum of expected time spent in the queue Wq(χ, βL, βH) and the time of service (τH or τL

depending on the recommendation). The expected waiting times for consumers joining the service

queue given the potential demand, Λ, and the strategy profile (χ, βL, βH), and diagnosis d ∈ {L,H}
are as follow:

WL(χ, βL, βH) = τL +Wq(χ, βL, βH) (2)

WH(χ, βL, βH) = τH +Wq(χ, βL, βH) (3)

where Wq(χ, βL, βH) = Λ(βLτ
2
L(1− χ) + βHτ

2
Hχ)/ (1− Λ(βLτL(1− χ) + βHτHχ)) . (4)

The above expressions apply if the stability condition Λ(βLτL(1 − χ) + βHτHχ) < 1 holds. If the

stability condition is not satisfied, the expected waiting time is infinite.3

3.1 Diagnosis and Queueing

The expert sets his diagnostic strategy, χ which is dependent on θ, Λ and prices (pL, pH). We

suppress the dependencies on θ, Λ and price in the diagnostic strategy χ for the ease of exposition.

Due to service liability, consumers with major problems (M) are recommended the major treatment,

and therefore, χ ≥ θ. On the other hand, consumers with minor problems (m) may be subject

to overprovision. We focus on pure diagnostic strategies, i.e., χ ∈ {θ, 1} for analytic tractability.

Consumers do not observe the expert’s diagnostic strategy χ, but deduce it through the prices

(pL, pH) and Λ to make their queue joining decision.

Given the expert’s diagnostic strategy χ, and the consumers symmetric queue joining strategy

β = (βL, βH), the effective demand for the minor treatment is λL = βL(1−χ)Λ, while the effective

demand for the major treatment is λH = βHχΛ.

3Equilibrium joining rates ensure stability, since the revenue falls as waiting times grow.
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Consumers’ Expected Payoff and Expert’s Revenues. Given the prices (pL, pH) and the

potential demand Λ, under the strategy profile (χ, βL, βH), the expected payoff of a consumer from

joining the queue upon the recommendation d is:

Vd(χ, βL, βH) =


vL − pL − cWL(χ, βL, βH) if d = L

vHθ/χ+ vL(χ− θ)/χ− pH − cWH(χ, βL, βH) if d = H,

(5)

while the expert’s revenues can be written as:

R(pL, pH ,Λ, χ, β) = Λ (pL(1− χ)βL + pHχβH) . (6)

An arriving customer will procure the recommended service (i.e., join the service queue) only if

Vd(χ, βL, βH) is non-negative.

Equilibrium Conditions. Given the potential demand Λ, and the prices (pL, pH), under sym-

metric consumer strategies, the set of equilibria E(Λ, pH , pL) ⊂ {θ, 1}× [0, 1]× [0, 1] of the diagnosis

and queue joining game consists of strategy profiles (χe, βeL, β
e
H), which simultaneously satisfy the

following set of conditions:

βeL = max
{0≤βL≤1}

{βL|βLVd(χe, βL, βeH) ≥ 0} , (7)

βeH = max
{0≤βH≤1}

{βH |βHVd(χe, βeL, βH) ≥ 0} , (8)

χe = arg max
χ∈{θ,1}

{Λ (pL(1− χ)βeL + pHχβ
e
H)} . (9)

Equations (7) and (8) guarantee that under the strategy profile (χe, βeL, β
e
H), a self-interested

consumer will join the service queue with positive probability upon receiving recommendation

d ∈ {L,H}, as long as there is non-negative value in doing so. The diagnosis and queue joining

game may have multiple symmetric equilibria satisfying the above conditions, for a given set of

prices (pH , pL).

However, as we will show in Section 5, under optimal prices, the equilibrium of the diagnosis and

queue joining game is unique in symmetric consumer strategies (i.e., the set E(Λ, pH , pL) consists

of a single strategy profile) in all but one scenario. In that particular scenario we focus on the

consumer equilibrium, that maximizes the expert’s revenues.

Given the prices (pL, pH) and Λ, the equilibrium demands for the minor and major treatments

is λeL(pH , pL) = (1− χe)βeLΛ, and λeH(pH , pL) = χeβeHΛ, respectively. The expert’s incentives and

resultant consumer skepticism clearly lead to destruction of social value. To measure the extent of

value reduction due to expert’s equilibrium pricing and service strategy, we first discuss the socially
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optimal (first-best) provision of the service in Section 4.

4 Socially Optimal Provision of the Service

We consider the first-best provision of the expert service by a social planner with complete infor-

mation on each problem type. The social planner’s objective is to maximize the value generated

by the capacitated service system net of congestion costs, by suitably controlling the admission to

the queue for each treatment.

Remark: The social planner will always provide true diagnosis (χ = θ). Overtreatment decreases

social welfare, as it increases consumer waiting costs without increasing the value of the service

provided.

Now, we explore the admission control problem. Admitting a consumer with a major problem

into the system generates a value vH for the customer, while increasing the expected workload at

the server by τH units of time. Similarly, admitting a minor problem consumer into the system,

generates value vL while increasing the expected workload by τL. Thus, every admission increases

workload causing the expected wait time to increase for all admitted consumers, since they all share

the same service queue.

Let the admission rates for minor and major problems be λL and λH respectively. Thus, ex ante

admission probability for a minor problem customer is therefore λL/(Λθ̄) and the admission proba-

bility for a major problem customer is λH/(Λθ). Under socially optimal admission policy, we have

χ = θ. Using equation (4), we can write the expected waiting time in queue as Wq

(
θ, λL

(1−θ)Λ ,
λH
θΛ

)
.

For expositional ease, we drop other parametric dependencies and write Wq

(
θ, λL

(1−θ)Λ ,
λH
θΛ

)
as

Wq(λL, λH).

A consumer with a minor problem derives a net value of vL − cτL − cWq(λL, λH), and the

consumer with a major problem derives a net value of vH − cτH − cWq(λL, λH). Let SW (λL, λH)

denote social welfare when the admission rates for minor and major treatments are λL and λH

respectively. Then,

SW (λL, λH) , λL(vL − cτL) + λH(vH − cτH)− c(λL + λH)Wq(λL, λH). (10)

The social planner’s objective would be to choose admission to maximize welfare, i.e.,

max
{0≤λH≤θΛ,0≤λL≤θ̄Λ}

SW (λL, λH).

We will demonstrate that the socially optimal actions are highly dependent on various parameter

scenarios, despite our model parsimony. The objective function in (10) is not quasi-concave. In

what follows, we will develop on the key drivers of the optimal social welfare maximizing policy
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can be characterized in the population. As a first step, we analyze social welfare, when the expert

fixes the admission rate for one of the treatments in the following Section 4.1.

4.1 Type-Dependent Welfare Decisions

In Lemma 1, we characterize the admission control policy for a specific treatment (minor or major)

by holding the other admission decision exogenous. The first part of Lemma 1 illustrates the

socially optimal admission rate for consumers with minor problems, λ∗L(λH), for a fixed admission

rate of major problems. In the second part of Lemma 1, the socially optimal admission rate for

consumers with major problems, λ∗H(λL), for a fixed minor problems admission is presented. All

proofs and technical derivations are presented in the Appendix.

Lemma 1. 1. Given λH , the social welfare SW (λL, λH) is maximized by:

λ∗L(λH) =


1−λHτH

τL
−
√

cγL(λH)
vLτL

if 0 ≤ λH ≤ λ̂H

0 if λH > λ̂H

(11)

where γL(λH) = 1+(1/τL)(1−λHτH)λH(τH−τL)2, and λ̂H is such that ∂SW (0, λ̂H)/∂λL = 0.

λ∗L(λH) is decreasing in λH for λH ≤ λ̂H .

2. Given λL, the social welfare SW (λL, λH) is maximized by:

λ∗H(λL) =


1−λLτL
τH

−
√

cγH(λL)
vHτH

if 0 ≤ λL ≤ λ̂L

0 if λL > λ̂L

(12)

where γH(λL) = 1 + (1−λLτL)λL(τH−τL)2

τH
, and λ̂L is such that ∂SW (λ̂L,0)

∂λH
= 0.

λ∗H(λL) is decreasing in λL for λL ≤ λ̂L.

Lemma 1(1) illustrates the optimal admission rate for consumers with minor problems, λ∗L(λH),

when the admission rate for consumers with major problems is fixed at λH . Since λ∗L(λH) is

decreasing in λH , fewer minor problems are admitted as the admission rate for major problems

increases. When major problem consumers are admitted at a higher rate, both the utilization of

the system and overall waiting costs are higher. As a result, fewer minor problem consumers can

be admitted.

In particular, if the fixed admission rate for consumers with major problems is higher than

λ̂H , the incremental waiting cost for the population caused by the admission of one more minor

problem consumer, exceeds the additional value of treating the minor problem vL. Hence, it is not
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socially beneficial to admit one more consumer with a minor problem. Above a threshold of major

problem admissions, it is socially optimal that no more minor problem consumers are admitted:

λ∗L(λH) = 0 for λH ≥ λ̂H . When the major problem admission rate is below λ̂H , minor problem

consumers can be accommodated.

The results of Lemma 1(part 2) mirrors that of Lemma 1(part 1). Fix λL. The socially optimal

admission rate of major problem consumers λ∗H(λL) is decreasing in λL, and after the certain

threshold admission rate of λL, it is (conditionally) optimal to not admit any major problem

consumers. This is a direct outcome of the value-time dependency. Even though major treatments

bring higher value, they are insufficient to make up for the additional waiting times created due to

the longer service time.

To wit, after sufficient consumers of a type are admitted, it is socially optimal to deny admission

to the other type. Social benefits accrue by trading off one type of problems against the other. In

particular, it is socially optimal for monopolist service providers with high utilization (i.e., high

admission compared to capacity) to engage in specialization. We further characterize the social

welfare function in Lemma 2.

Lemma 2. 1. SW (λ∗L(λH), λH) is convex in λH for λH ≤ λ̂H and concave in λH for λH > λ̂H .

2. SW (λL, λ
∗
H(λL)) is convex in λL for λL ≤ λ̂L and concave in λL for λL > λ̂L.

Lemma 2(1) shows that the social welfare is convex in λH for major problem admission rate

is sufficiently low (λH ≤ λ̂H), as long as the minor problem customers are admitted optimally (as

prescribed by Lemma 1). If the major admission rate is above the threshold, i.e., λH > λ̂H , it is

optimal to deny service to minor problem consumers. In this case, the social welfare is concave in

λH . A corresponding result for welfare as a function of minor problem admission rate is provided

in Lemma 2(2).

4.2 Priorities and Service Specialization

Service Specialization. Following Lemma 2, we observe that in large market sizes (markets in

which the arrival rates are comparable to capacity or exceed it), the social planner would prefer to

serve only one of the problem types. Recall that service value has diminishing returns as service

times increase, i.e., vH > vL but vH/τH < vL/τL. Hence depending on the relative value accrued per

unit time of the treatments, one of the treatments is preferred. Thus, social welfare is maximized

by specialization. Let the admission policy be written as (minor admission rate, major admission

rate). Then two possible modes of specialization exist.

(a) Admitting some minor-problem customers and denying all major problem customers. The

optimal admission policy is (λ∗L(0), 0)), or
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(b) Admitting some major problem customers and denying all minor problem customers. The

optimal admission policy is (0, λ∗H(0)).

Admission Priorities. In smaller markets (i.e., arrival rates are small compared to service ca-

pacity), there is enough capacity to admit more than one type of customer problems. The social

planner prioritizes by

(a) Admitting all minor problems customers compared to major problem customers, or

(b) Admitting all major problem customers over minor problem arrivals.

In Lemma 3, we explore the conditions that impose the preference order in service prioritization.

In order to understand the priority rules better, particularly to understand why minor problems

may be prioritized, recall that major treatments take a longer duration. There is some social value

lost as the service time increases, as a result of diminishing marginal returns and the service times

imposing negative waiting cost externalities on other customers. For notational convenience, let us

define this welfare difference as ∆, where it can be shown that

∆
def
==

c(vH −
√
vHcτH)(τH − τL)2

τLτH
√
cvHτH

> 0.

The term ∆ could be thought of as the additional social value (rate) achieved, when the value of

service increases from vL to vH , even as the expected service time increases from τL to τH . When

vL
τL

=
vH
τH

+ ∆,

the social welfare planner would find no benefit in admitting one type of consumers over the other.4

In other words, when the above relationship holds, treatments of minor and major problems provide

the same social value.

Hence, depending on how vL/τL compares with ∆ + vH/τH , we have two cases:

(a) ∆ ≤ vL
τL
− vH
τH

. The marginal value of major treatments over time is strongly diminishing. Longer

major treatments do not create sufficient additional value to overcome negative externalities.

(b) ∆ > vL
τL
− vH

τH
. The marginal value of major treatments over time is weakly diminishing. Longer

major treatments bring in additional value sufficient to overcome waiting cost externalities.

Hence, as such, in Scenario (a) social planner exclusively offers minor treatments or prioritize them

over major treatments. In Scenario (b), he prioritizes or specializes in major treatments. Before

we formalize the social welfare action, we prove a technical result in Lemma 3.

4Recall that due to diminishing marginal value of service time, we have vH/τH < vL/τL. This assumption
can be relaxed without affecting our conclusions. For instance, it can be intuited from the conditions in §4, that
overtreatment fraud is more likely when marginal value of more treatment is not diminishing in time.
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Lemma 3. When vH
τH
≤ vL

τL
< ∆ + vH

τH
then:

1. SW (λL, λH) has a unique saddle point (λL, λH) ∈ [0, λ̂L] × [0, λ̂H ], such that λL = λ∗L(λH)

and λH = λ∗H(λL).

2. For θ̄Λ ≥ λL define Λ̃H(θ̄Λ) ∈ [λH ,∞) as,

f Λ̃H(θ̄Λ) =

{
λH s.t. SW (θ̄Λ, λ∗H(θ̄Λ)) = SW (λ∗L(λH), λH) if λL ≤ θ̄Λ ≤ λ̃L
∞ if θ̄Λ > λ̃L

where λ̃L > λL is unique solution to SW (λ̃L, λ
∗
H(λ̃L)) = SW (0, λ∗H(0)).

From Lemma 3, if the treatment value is weakly diminishing, i.e., vHτH > vL
τL
−∆, in small markets

with few consumers with minor problems, and sufficiently large arrivals with major problems,major

treatments are prioritized. Equipped with the proven results, we are now ready to describe the

socially optimal service policy in Proposition 1.

4.3 Welfare Maximizing Admission Policy

In Proposition 1, we segment our finding following the preceding discussion into two scenarios: (a),

strongly diminishing marginal returns on the value in time and in Scenario (b), weakly diminishing

marginal returns. The socially optimal admission rates are marked by superscript S.

Proposition 1. (a) If ∆ ≤ vL
τL
− vH

τH
, the socially optimal service policy is:

(λSL, λ
S
H) =


(
min{θ̄Λ, λ∗L(0)}, 0

)
if θ̄Λ > λ̂L

(
θ̄Λ,min{θΛ, λ∗H(θ̄Λ)}

)
if θ̄Λ ≤ λ̂L

(b) If vL
τL
− vH

τH
< ∆, the socially optimal service policy is:

(λSL, λ
S
H) =



(
min{θ̄Λ, λ∗L(θΛ)}, min{λ∗H(0), θΛ}

)
if θ̄Λ < λL

(λ∗L(θΛ), min{λ∗H(0), θΛ}) if θ̄Λ ≥ λL and θΛ > Λ̃H(θ̄Λ)

(
min{θ̄Λ, λ∗L(0)}, min{λ∗H(θ̄Λ), θΛ})

)
if θ̄Λ ≥ λL and θΛ ≤ Λ̃H(θ̄Λ)

Proposition 1(a) addresses strongly diminishing marginal returns of treatment time. In this

case, prioritizing major treatments leads to welfare-loss, either due to longer service time, or weak

additional value provided for the time taken. Therefore, it is socially optimal to prioritize minor
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Figure 1: Socially optimal admission rates (minor types λSL, major types λSH). (a) Strongly diminish-
ing returns (left panel), (b) Weakly diminishing returns (right panel). x-axis: Market size (Λ), y-axis:
Incidence probability of major problems θ.

problems regardless of the market size (Λ). If the market is small or when the minor problem

incidence is low, i.e., Λθ̄ < λ̂L or simply, Λ < λ̂L/(1− θ), the service is rationed for major problem

customers. Major problem admission is capped just to allow for treatment of all minor problem

arrivals. When the market size is large, Λ > λ̂L/(1− θ), utilization levels are high, hence all major

problem types are denied admission, and social welfare is maximized by service specialization.

Left panel of Figure 1 characterizes the space of social-welfare maximizing policies for the

strongly diminishing returns case. It can be seen that, when the market is sufficiently large (south-

east corner), no major admissions are made. As can be seen in the Figure 1(a), it is welfare

improving to admit major problem treatments when (i) the market size is sufficiently small – the

service provider has excess service capacity (left area in the figure), or (ii) the major problem inci-

dence is high – there are too few minor problems in the market compared to the available capacity.

In both cases, any admission of major treatment cases is driven by capacity utilization consider-

ations. The admission rate for major treatments, is decreasing in arrival rates and increasing in

θ.

Proposition 1(b) addresses weakly diminishing marginal returns of treatment time. Major

treatments are prioritized since they increase welfare – they bring in sufficiently high additional

service value that compensates for the additional delays created due to longer major treatment

time. The socially optimal admission control is an outcome of the interplay between major problem

incidence and market size, as before, but also based on value per capita (vH vs. vL), as can be seen
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in the right panel of Figure 1.

As before, capacity considerations drive similar welfare actions (as in Scenario (a)). When

the market is small and the available capacity is in excess, i.e., under low utilization, the negative

impact of capacity constraints and service delay is low. All types are admitted into service. (See left

side of the figure in the right panel). For sufficiently large markets, Λ > λ̂L/(1 − θ), it is optimal

to admit only the minor problems types as they generate higher value per unit of service time.

However, when prevalence of major problems is significant, i.e., (1− θ)Λ < λL, i.e, θ > 1− λL/Λ,

consumers with major problems are prioritized over those with minor problems.

Finally, when the incidence of major problem is sufficiently low in large markets – how low

depends on the market size – there are not enough major problems to treat. Hence, a social

planner would just prioritize or specialize in serving minor problem customers.

To conclude, the social welfare maximizing planner either specializes in serving a class of cus-

tomer problems, or prioritizes the class of problems. Whether the social planner prioritizes or

specializes in minor or major problem types depends on the service value vs. time, specifically how

quickly the marginal service value diminishes with additional time.

5 Revenue Maximization: Equilibrium Prices and Diagnosis

We now focus on the expert’s pricing decision in equilibrium. The expert decides on the prices of the

minor and major treatments in order to maximize his revenues. Information asymmetry plays a key

role in the outcomes. In order to characterize the asymmetry created by incomplete information,

we first discuss the complete information case. We follow the same information structure as in the

welfare case except that consumers can choose to join or balk.

Equilibrium under Complete Information. If consumers have complete information about

their own problem types, the equilibrium demand will be identical to the socially optimal admission

rates (λSL, λ
S
H) given in Proposition 1. The expert’s diagnosis is honest. Indeed, the need for

diagnosis is obviated by complete information. Note that it would not be rational for a customer

who knows her own type to wait for an incorrect treatment: Major types do not benefit from minor

treatment, and minor types do not incur longer waits for unnecessary major treatment at a higher

price. Under complete information, the expert can price the services to achieve the maximum

social welfare, and fully extract the surplus from consumers joining the unobservable service queue.

Thus, the first best (social welfare maximum) is achieved if there is no information asymmetry.

This observation is consistent with existing literature on unobservable queues (Hassin and Haviv

2004) in which the server extracts all consumer welfare.
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Efficiency: We address an equilibrium with first best outcomes, as an “efficient” equilibrium

since no social welfare is lot. Now, we examine the equilibria under information asymmetry.

Information Asymmetry. When there is information asymmetry between consumers and the

expert, the diagnostic strategies play a bigger role. The prices serve several purposes: Prices

determine the extent of consumer demand that is covered by the firm; they control congestion in

the system and they inform the market on the expert’s diagnostic strategy.

The expert’s objective function can be written as:

max
{pL≥0,pH≥0}

{pLλeL(pH , pL) + pHλ
e
H(pH , pL)} , (13)

For brevity, we will demonstrate our results for strongly diminishing returns for service value. Recall

that, to improve welfare, consumers with minor problems are prioritized; This is hence the most

stringent existent condition for the experts incentives to overtreat. We will show the overtreatment

equilibrium nevertheless emerges.

To begin the equilibrium analysis, we first shed light on prices under two extreme cases: honesty

– the case when all decisions are accurate and there is no overtreatment, and complete overprovision

– in which all minor problems are recommended overtreatment.

p̄L(λL, λH) = vL − cWL

(
θ,

λL
(1− θ)Λ

,
λH
θΛ

)
, (14)

p̄H(λL, λH) = vH − cWH

(
θ,

λL
(1− θ)Λ

,
λH
θΛ

)
, (15)

Hence p̄L and p̄H are the prices for minor (L) and major (H) treatments respectively under honest

diagnosis. Next, we characterize the price for major treatment when the expert false-diagnoses,

recommending major treatment to all arriving customers regardless of their type.

p̄C(λ) = vL + θ(vH − vL)− cWH

(
1, 0,

λ

Λ

)
. (16)

It is evident that p̄L, p̄H and p̄C all extract the entire consumer welfare. Thus, the ex-ante expected

utility net of waiting costs from consuming the offered service is zero.

In order to characterize the equilibrium, we require some technical results that are characterized

in Lemmas 4 and 5. In Lemma 4, we focus on the equilibrium demand on major types under honest

diagnostic strategy, which helps us to compare the results with the social welfare (which is honest),

and thus develop market conditions amenable for honest (and efficient) equilibrium. To begin with,

we define λ̄H(Λ) as the maximum rate of major problem consumers that can be treated through an

honest diagnostic policy, if the expert serves all the minor problem types. λ̄H captures the market

coverage limit on major treatments under an honest diagnostic policy. This helps us pin down the
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conditions conducive for overtreatment in diagnosis.

Lemma 4. 1. For Λ ≤ λ∗L(0)

(1−θ) , the maximum major type demand λ̄H(Λ) satisfies:

p̄H((1− θ)Λ, λ̄H(Λ))λ̄H(Λ)

θΛ
= p̄L((1− θ)Λ, λ̄H(Λ)). (17)

2. λ̄H(Λ) is increasing in θ.

3. ∃ Λs such that the efficient (first best) provision cannot be achieved for Λ < Λs.

Lemma 4(1) provides an implicit characterization of the market coverage of major problem types

under an honest diagnostic policy. For a given Λ, if all the consumers with minor problems join the

service queue, λ̄H(Λ) denotes the maximal major problem consumers that can join under honest

diagnosis. This upper-bound on admission under honest diagnosis helps us determine the market

size threshold when the expert benefits from providing false recommendations. As the incidence of

major problem θ increases, the upper bound on major problem treatments increases.

Lemma 4(3) derives the market size threshold below which the expert’s incentive to misdiag-

nose creates large consumer costs and diminished social welfare. Thus, when the market demand

is sufficiently low, the expert has capacity to provide overtreatment and accrue excess revenues

through strategic diagnosis.

Although such false diagnosis and overtreatments lead to improved revenues for the service

providers, they create two costs for the consumers, which reduces welfare. First, some consumers

pay more for services they do not necessarily need. Second, the increased service times increase

overall delays for all consumers. All consumers now expect to wait longer for a less honest service.

As a result, there is consumer welfare loss, which may exceed the service providers’ revenue gains,

resulting in social welfare loss. Hence, the equilibrium is inefficient (the first-best is not achieved)

in small markets.

Providing false recommendations dissuades customers from joining the service queue because

of two factors: the reduced expected utility due to anticipated strategic diagnosis, and longer waits

due to overtreatment. This leads to some consumers balking and hence causes reduced equilibrium

demand for the service provider. Such demand loss due to congestion, acts as a deterrent to the

expert from providing false recommendations and overtreating minor problem consumers.

Nevertheless, the incentive to overtreat is not eliminated. Let us examine the maximum revenue

the expert can earn through overtreatments following consistent false diagnosis to all arriving minor

problems. Given some Λ, the revenues are given by:

Πc(Λ) = I(Λ > λ∗c)

√θvH + (1− θ)vL
τH

−
√
c

2

+ I(Λ ≤ λ∗c)Λ ((θvH + (1− θ)vL)− cWH(1, 0, 1)) ,
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where I(·) is the indicator function. λ∗c = 1
τH
−
√

c
(θvH+θ̄vL)τH

is the effective arrival rate maximizing

the expert’s revenues, when major treatment is recommended to every customer. Using the above

result, we provide conditions when it is optimal for the expert to cheat/overtreat customers with

minor problems in Lemma 5.

Lemma 5. When θ > c(τH−τL)
vH−vL and ∀λ < Λ̄c, false recommendations accrue higher revenues for the

expert than honest recommendations. Λ̄c is the unique solution to Πc(Λc) = (1−θ)Λcp̄L(θ̄Λc, λ̄H(Λc))+

λ̄H(Λc)p̄H(θ̄Λc, λ̄H(Λc)).

Lemma 5 if the market size is smaller than a threshold and if there is sufficient incidence

of major problems, overtreatment becomes more profitable than honest diagnostic strategy. The

first condition is a direct effect of capacities. If the utilization is high, the service provider would

maximize revenues without having to misdiagnose. On the other hand, when the arrival rates are

small, deliberate overtreatment is a mechanism is to employ the excess service capacity that would

otherwise remain unused.

However, a significant prevalence of major problems in the population, is essential for major

treatment diagnosis to be believable for consumers. If the known incidence rate is low, consumers

are less likely to trust major recommendations and would balk from the queue, i.e., “falseness”

in recommendations is not sufficiently credible. Using the Lemmas 4 and 5, we are ready to

characterize the optimal prices and the equilibrium outcomes in Proposition 2.

Proposition 2. The equilibrium arrival rates (λeL, λ
e
H) and optimal prices (p∗L, p

∗
H) are as follow:

1. Minor Treatment (Specialization) Equilibrium: When Λ ≥ λ̂L
1−θ , the expert provides an

honest diagnosis, χ∗ = θ, and only minor problem consumers join.

(λeL, λ
e
H) =


(λ∗L(0), 0) if Λ > λ∗L(0)/θ̄

(θ̄Λ, 0) if λ∗L(0)/θ̄ ≥ Λ ≥ λ̂/θ̄
(p∗L, p

∗
H) = (p̄L(λeL, 0),−) if Λ > λ∗L(0)/θ̄.

2. Honest Price Discrimination: When Λ̄c ≤ Λ < λ̂L
1−θ , the expert provides an honest

diagnosis, χ∗ = θ. All minor problem consumers and some major problem consumers join.

(λeL, λ
e
H) =


(θ̄Λ, λ∗H(θ̄Λ)) if λ̂/θ̄ > Λ ≥ Λ̄s

(θ̄Λ, λ̄H(Λ)) if Λ̄s ≥ Λ ≥ Λ̄c

(p∗L, p
∗
H) = (p̄L(λeL, λ

e
H), p̄H(λeL, λ

e
H)) if λ̂/θ̄ > Λ ≥ Λ̄c
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Figure 2: Optimal prices and the equilibrium demand as a function of the potential demand Λ.
Solid lines: optimal prices, dotted lines: equilibrium demand.

3. Overtreatment Equilibrium: When Λ < Λ̄c, the expert provides false recommendations

to all minor problem consumers χ∗ = 1. If θ > θ̂, the market coverage is partial when Λ is

sufficiently high.

(λeL, λ
e
H) =


(0, λ∗c) if Λ̄c > Λ ≥ λ∗c

(0,Λ) if min{λ∗c , Λ̄c} ≥ Λ ≥ 0

(p∗L, p
∗
H) = (p̄C(λeH)− δ, p̄C(λeH)) if Λ̄c > Λ ≥ 0

for any δ ∈ (0, p̄C).

Proposition 2 presents the optimal prices and equilibrium demands for different levels of market

size. Despite the information asymmetry between the expert and the consumers, the optimal prices

achieve the first-best provision of the service as long as arrival rate is sufficiently high, i.e., Λ ≥ Λ̄s.

Figure 2 illustrates the optimal prices, (p∗L, p
∗
H), and the equilibrium demand, (λeL, λ

e
H) as functions

of demand, Λ.

5.1 Minor Treatment (Service Specialization) Equilibrium

When the market size is sufficiently large Λ ≥ θ̄λ̂L, the expert specializes in providing only the

minor treatment while making honest recommendations. He chooses to price out all consumers

with major problems (by setting an arbitrarily high price for those services).5 This equilibrium is

captured in region IV in the Figure 2. Even though only minor problem consumers are attended

5Major treatments are prioritized when the service value is weakly diminishing in time, as shown before.
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to, only some of them can join, since congestion costs can be make net value negative.

The optimal price for the minor treatment, p∗L, is decreasing in Λ (as evident in Figure 4) for

Λ < λL(0)/θ̄. As the market grows (i.e., Λ increases), the expert cuts price to admit more minor

consumers into the system. However, it is not optimal to reduce prices further and admit more

than λ∗L(0) consumers into the system. In this case, an increased incidence of major problem, i.e.,

high θ, results in a lower demand for the expert as it necessarily implies fewer minor problems in

the market ((1 − θ)Λ is lower). The expert responds to the decreasing demand by increasing the

price p∗L.

5.2 Honest Equilibrium

When the market size is sufficiently large but not too large (i.e., when Λ̄c < Λ ≤ λ̂L
θ̄

), the expert

provides honest recommendations, χ∗ = θ, (i.e., all minor problem consumers are recommended

only the minor treatment), but also has enough excess capacity to provide major treatment for

major problem consumers. Depending on the market size, honesty could be efficient.

Honest Efficient Equilibrium. If market size is such that Λ̄s ≤ Λ ≤ λ̂L/θ̄, (see Region III in

Figure 2) the optimal prices (p∗L, p
∗
H), achieve the first-best service provision. Note as the potential

demand or market size Λ increases, both prices increase. Hence, the number of joining customers

increases even as the price increases. Typically, service providers need to cut the price to admit

more consumers into the system. The observed result is due to preference of types.

Note that the expert prefers consumers with minor problems to those with major problems.

As Λ increases, the equilibrium demand for the major treatment decreases, while the equilibrium

demand for the minor treatment increases. The expert sets prices to preferentially admit minor

treatments. This increases the ratio of minor treatment consumers to major treatment consumers

joining the queue, λeL/λ
e
H . Hence the average equilibrium service time of the service provider

decreases. This leads to lower waiting times, despite the higher number of consumers (λeL + λeH)

joining the service queue in equilibrium. Finally, the reduced cost of waiting allows the expert to

charge higher prices to extract the additional welfare.

Honest Inefficient Equilibrium The provision of the service is honest but not efficient (i.e.

the first best is not attained) for Λc ≤ Λ̄ ≤ Λ̄s. (See corresponding Region II in Figure 2). In

fact, there may be underprovision of the major treatment due to information asymmetry. The

expert would be better off by serving more consumers with major problems. But consumers believe

that major treatments are often overtreatments. Hence, the expert cannot commit to an honest

diagnosis. Note that as major problem incidence θ increases, the expert’s revenues decrease. As

the potential demand for the minor treatment ((1 − θ)Λ) decreases with increasing θ, the expert

admits more consumers with major problems into the system (λeH is increasing), which results in a

21



slower service rate in equilibrium and longer waiting times. As a result, both prices (p∗L, p
∗
H) and

revenues fall.

Interestingly, as the value of treating major problems, vH , increases, the equilibrium demand for

the major treatment, λeH , decreases. This is mainly due to the increasing likelihood of overprovision

(expert cheating) with the increasing value gap between the minor and major treatments. Despite

the decreasing equilibrium demand, the expert is able to achieve higher revenues by increasing

prices (p∗L, p
∗
H). When the value of treating minor problems, vL, increases, the equilibrium demand

for the major treatment, λeH , and the prices, (p∗L, p
∗
H), increase, yielding higher revenues to the

expert.

5.3 Overtreatment Equilibrium

In small markets (Λ < Λ̄c), the expert recommends major treatment to all arriving consumers,

χ∗ = 1. As a result, even though consumers do not know their type, they know that with probability

θ̄ they could be overtreated. Hence, consumers have a lower willingness to pay for the major

treatment recommended. In sufficiently small markets with with low incidence of major problems

(θ ≤ θ̂ and Λ ≤ Λ̄c), there exists an overtreatment equilibrium in which all consumers knowingly

join. The expert provides all consumers with the major treatment, i.e., λeH = Λ.

Expert false diagnosis becomes more likely as vH and θ increase. The optimal price for major

treatment (which is often an overtreatment) increases with the incidence of major problem (or the

value of resolving those major problem). Since, consumers anticipate that the expert will cheat.

It makes them reluctant to join due to skepticism about the true value of service, leading to some

consumers balking (likely to seek external advice).

Note that under the overtreatment equilibrium, the minor treatment price can take any value

lower than p̄C . The lower minor treatment can essentially be considered “bait-and-switch” prices

that are offered, but never materialized. Hence low prices for minor treatments do not provide any

further confidence in service provider’s honesty.

As consumers become more sensitive to delays, overtreatment becomes less likely in equilib-

rium: As the cost of waiting c increases, the expert can achieve honest price discrimination while

serving fewer consumers (Λ̄c decreases) in equilibrium; hence, the potential for honesty increases. If

consumers are more impatient to delays, overtreatment becomes less profitable. Thus, congestion

dampens expert cheating behavior.

6 Conclusion

The information asymmetry between service providers and consumers is an obstacle preventing

honest and efficient provision in expert service markets. Experts often have incentives to exploit
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their informational advantage over consumers by recommending unnecessary services and treat-

ments to consumers. Despite the growth of service economy, the overtreatment problem remains

unexplored in service operations. In our paper, we consider an expert with serving consumers

who arrive with problems that they cannot self-diagnose. Upon diagnosis, consumers update their

beliefs on offered diagnosis treatment and corresponding price, and decide whether to go through

the service.

We show that when service capacity is limited and consumers are sensitive to delay, exploiting

the informational advantage through overtreatment is costly for an expert. Unnecessary treatments

take longer and use up capacity, which intensifies the congestion in the system, leading to longer

wait times and smaller demand. Hence, congestion costs act a deterrent to expert overtreatment.

As a result of the incentives, committing to an honest diagnostic policy becomes costly for the

expert, especially in small markets. In fact, as major treatments become more valuable, there is

increased skepticism (due to overprovision) that deters more consumers from joining an honest ser-

vice. In these cases, prices reveal information on likely over-treatment. To make his actions credible,

an honest expert has to charge sufficiently high prices for both minor and major treatments, and

limit the demand for the more profitable major treatment. As the market-size decreases, signaling

an honest diagnosis becomes costlier, since having excess service capacity makes overtreatment

easier. As a result, overtreatment is unavoidable in small markets.

The social planner would recommend appropriate treatments. Nevertheless, it may be prudent

for the social planner under certain conditions, if the expert specializes or prioritizes in providing

low-value minor treatments (or major treatments). Minor treatment specialization occurs when

major treatments which provide more value per service take up too much resource and time,

diminishing the availability of the service for minor treatments, which are typically more common.

We recommend that in such cases, capping prices (or reimbursements), would lead to investment

in low-capital, less expensive minor interventions.

Despite capturing many facets of overtreatment in expert services, our model is a stylized model

that is subject to limitations. For instance, some of the treatment fraud can be ameliorated (but

not eliminated, because overtreatment incentives do not disappear) by seeking second opinions. In

the empirical data from the health care industry, significant overtreatments have been observed,

despite the presence of second opinion options.

If consumer access-to-service is a significant concern, as in health care settings, the social welfare

maximization does not necessarily improve access for all customer problems. The lack of access

is further exacerbated when the arrival rate (i.e., capacity utilization) is high, and the incidence

of complex problems become predominant. Overtreatments are also costly in several other ways.

The social after-effects of overtreatment are deeply felt in other medical side-effects, long-term care

expenses and suicide rates (Schairer et al 2006). Finally, the pricing issues in insurance-related

aspects of the health-care industry are complex. We hope that our model is a step towards more
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theoretical or empirical investigations into unraveling the complexity.
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Appendix: Proofs

Proof of Lemma 1: Plugging in χ = θ, βL = λL
(1−θ)Λ and βH = λH

θΛ into equation (4), we can

write the social welfare function as:

SW (λL, λH) = λL(vL − cτL) + λH(vH − τH)− c
(λL + λH)(λLτ

2
L + λHτ

2
H)

(1− λLτL − λHτH)
. (18)

1. For a given λH , SW (λL, λH) is concave in λL as the second order condition
∂2SW (λL,λH)

∂λ2
L

= − 2cτ2
L

1−λLτL−λHτH −
2cτL((λLτ

2
L+λHτ

2
H)+τ2

L(λL+λH))

(1−λLτL−λHτH)2 − 2cτ2
L(λL+λH)(λLτ

2
L+λHτ

2
H)

(1−λLτL−λHτH)3 < 0,

for (λLτL + λHτH) < 1 which is for stability.

To determine the optimal admission rate, λ∗L(λH), we first find that for 1 > (λLτL + λHτH),

the first order condition,

0 = ∂SW (λL,λH)
∂λL

= vL − cτL − c
λLτ

2
L+λHτ

2
H+τ2

L(λL+λH)
1−λLτL−λHτH − cτL

(λL+λH)(λLτ
2
L+λHτ

2
H)

(1−λLτL−λHτH)2 , is uniquely

satisfied at λ∗L = 1−λHτH
τL

−
√

cγL(λH)
vLτL

.

The social welfare function SW (λL, λH) is sub-modular in (λL, λH) for 1 > (λLτL + λHτH),

i.e.,

0 <
∂2SW (λL, λH)

∂λL∂λH
= −

c(τ2
L + τ2

H)

1− λLτL − λHτH
−
c(τH + τL)(λLτ

2
L + λHτ

2
H) + c(τLτH)(λL + λH)(τL + τH)

(1− λLτL − λHτH)2

−
2cτLτH(λL + λH)(λLτ

2
L + λHτ

2
H)

(1− λLτL − λHτH)3
.

Therefore, λ∗L is decreasing in λH .

There exists a λ̂H ∈ (0, 1/τH) such that λ∗L(λH) = 0 for λH ≥ λ̂H , since ∂SW (0,0)
∂λL

= vL−cτL >
0, ∂SW (0,1/τH)

∂λL
= −∞ and ∂SW (λL,λH)

∂λL
is decreasing in λH due to submodularity.

Note that SW (λL, λH), is symmetric in λL and λH . Therefore, the proof of Lemma 1.2 is

similar to that of Lemma 1.1.
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Proof of Lemma 2:

1. Plugging λ∗L(λH) into equation (18) and differentiating, we get

d2SW (λ∗L(λH), λH)

dλ2
H

=


√
cvL(τ2

H−τ
2
L)2

2τL(λH(1−λHτH)(τH−τL)2+τL)3/2 if λH ≤ λ̂H

−2cτ2
H

(1−λHτH)3 if λH > λ̂H

(19)

Note that 1 > λHτH since the system utilization must be below one, and, τH > τL since the

major treatments take longer than the minor treatments on average. Therefore, the second order

derivative is ≥ 0 for λH ≤ λ̂H and < 0 for λH > λ̂H , which proves the desired result.

2. Similarly, plugging λ∗H(λL) into equation (18) and differentiating, we get

d2SW (λL, λ
∗
H(λL))

dλ2
L

=


√
cvH(τ2

H−τ
2
L)2

2τH(λL(1−λLτL)(τH−τL)2+τH)3/2 if λL ≤ λ̂L

−2cτ2
L

(1−λLτL)3 if λL > λ̂L

(20)

proving the desired result when τH > τL and λLτL < 1.

Proof of Lemma 3:

1. To prove the result, we first show that social welfare SW (λL, λ
∗
H(λL)) is maximized at λ∗L(0) =

1
τL
−
√

c
vLτL

for vH
τH

< vL
τL

:

• SW (0, λ∗H(0)) =
(√

vH
τH
−
√
c
)2

<
(√

vL
τL
−
√
c
)2

= SW (λ∗L(0), 0).

• λ̂L < λ∗L(0) since,

(i)
∂SW (λ∗L(0),0)

∂λH
= − c(τH−τL)2(

√
vLcτL−cτL)+cτL(vLτH−vHτL)

cτ2
L

< 0
(
vL
τL
≥ vH

τH

)
and vL > cτL,

(ii) SW (λL, λH) is concave in λH for a given λL (Lemma 1), and

(iii) SW (λL, λH) is submodular in (λL, λH) (Lemma 1).

From Lemma 1 we have that SW (λL, λ
∗
H(λL) is convex in λL for λL < λ̂L and concave in λL

for λL ≥ λ̂L. Therefore, SW (λL, λ
∗
H(λL)) can be maximized at either the corner point λL = 0

or at the local maximum λL = λ∗L(0). Since SW (0, λ∗H(0)) < SW (λ∗L(0), 0), SW (λL, λH) is

maximized at (λ∗L(0), 0).

To prove the existence of a unique saddle point it suffices to show that SW (λL, λ
∗
H(λL)) has

an interior global minimum (at λL = λL). (λL, λH) is the unique saddle point for SW (λL, λH)

since;

• The first order condition is satisfied for SW (λL, λH) at (λL, λH):

dSW (λL, λ
∗
H(λL))

dλL
=
∂SW (λL, λ

∗
H(λL))

∂λL
+
∂SW (λL, λ

∗
H(λL))

∂λH

∂λ∗H(λL)

∂λL
= 0
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⇒
∂SW (λL, λ

∗
H(λL))

∂λL
= 0.

• λL is a local maximizer for SW (λL, λH) for λH since SW (λL, λH) is concave in λL for a

given λH ,

• λH is a local maximizer for SW (λL, λH) for a given λH since SW (λL, λH) is concave in λH

for a given λL.

Therefore, if SW (λL, λ
∗
H(λL)) has a local minimizer in λL at λL, then (λL, λ

∗
H(λL)) is a saddle

point for SW (λL, λH).

Since SW (λL, λ
∗
H(λL)) is convex in λL for λL < λ̂L and concave in λL for λL > λ̂L,

SW (λL, λ
∗
H(λL)) has an interior global minimum only if

dSW (λL,λ
∗
H(λL))

dλL
is negative at λL = 0.

dSW (λL, λ
∗
H(λL))

dλL

∣∣∣∣
λL=0

=

√
vHcτH(vLτH − vHτL)− c(τH − τL)2(vH −

√
vHcτH)

τH
√
vHcτH

< 0

⇔ vL
τL

<
vH
τH

+
c(vH

√
vHcτH)(τH − τL)2

τLτH
√
cvHτH

,

which proves the desired result.

2. If SW (λL, λ
∗
H(λL)) has an interior minimizer in λL, then there exists a unique λ̃L > λL such

that SW (λ̃L, λ
∗
H(λ̃L)) = SW (0, λ∗H(0)) since, (i) SW (λL, λ

∗
H(λL)) is convex and decreasing

in λL at λL = 0, and (ii) The global maximum is SW (λ∗L(0), 0) at λ∗L(0) > λL.

Lemma A1. If vH
τH
≤ vL

τL
< ∆ then:

a. Λ̃H(θ̄Λ) is increasing in Λ and decreasing in θ for θ̄Λ ≤ λ̃L.

b. For θ̄ ∈ [λL, λ̃L], SW (θ̄Λ, λ∗H(θ̄Λ)) ≤ SW (λ∗L(θΛ), θΛ) if and only if Λ̃H(θ̄Λ) ≤ θΛ ≤ λ∗H(0).

Proof of Lemma A1:

a. For λL ∈ [λL, λ̃L], SW (λL, λ
∗
H(λL)) is convex and increasing in λL. Therefore, SW (θ̄Λ, λ∗H(θ̄Λ))

is increasing in Λ and decreasing in θ. SW (λ∗L(λH), λH) is increasing in λH for λH ∈ [λH , λ
∗
H(0)].

Therefore, Λ̃H(θ̄Λ) is increasing in Λ and θ̄.

b. For λL ∈ [λL, λ̃L], SW (λL, λ
∗
H(λL)) ≤ SW (0, λ∗H(0)). SW (λ∗L(λH), λH) is increasing in λH for

λH ∈ [Λ̃H(θ̄Λ), λ∗H(0)] which proves the desired result.

Proof of Proposition 1:

The social planner’s objective function is given by:

max
{0≤λH≤θΛ,0≤λL≤θ̄Λ}

{SW (λL, λH)} . (21)
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1. When ∆ < vL
τL
− vH

τH
, from Lemmas 1 and 3, we know:

SW (λL, λ
∗
H(λL)) is convex and increasing in λL for λL ∈ [0, λ̂L) and concave in λL for

λL ≥ λ̂L, and attains its maximum at λ∗L(0). As a result, SW (λL, λ
∗
H(λ)), is increasing in

λL ∈ [0, λ∗L(0)] and decreasing in λL > λ∗L(0) when vL
τL
≥ ∆ (from Lemma 3).

Case 1: θ̄Λ > λ̂L:

From Lemma 1, we know that λ∗H(λL) = 0 for λL > λ̂L and SW (λL, λ
∗
H(λL)) is increasing in

λL for λL ∈ [0, λ∗L(0)]. Therefore, the objective function in (21) is maximized by (λSL, λ
S
H) =

(θ̄Λ, 0) for λ̂L ≤ θ̄Λ < λ∗L(0).

If the potential demand for minor problems, θ̄Λ ≥ λ∗L(0), then social welfare is maximized at

the interior point (λSL, λ
S
H) = (λ∗L(0), 0). Thus, (λSL, λ

S
H) = (min(θ̄Λ, λ∗L(0)), 0).

Case 2: θ̄Λ ≤ λ̂L:

Again Lemma 1, we know that λ∗H(λL) > 0 and decreasing in λL for λL < λ̂L. SW (λL, λ
∗
H(λL))

is increasing in λL for λL ∈ [0, λ∗L(0)]. Therefore, the objective function is maximized by

(λSL, λ
S
H) = (θ̄Λ, λ∗H(θ̄Λ)) for θ̄Λ ≤ λ̂L and θΛ ≥ λ∗H(θ̄Λ).

If θΛ < λ∗H(θ̄Λ), then the optimal policy is (λSL, λ
S
H) = (θ̄Λ, θΛ), since SW (λL, λH) is

concave in λH for a given λL and increasing in λH for λH ≤ λ∗H(λL). Thus, (λSL, λ
S
H) =

(θ̄Λ,min{θ̄Λ, λ∗H(θ̄Λ)}).

Thus, combining cases 1 and 2,

(λSL, λ
S
H) =


(
min{θ̄Λ, λ∗L(0)}, 0

)
if θ̄Λ > λ̂L

(
θ̄Λ,min{θΛ, λ∗H(θ̄Λ)}

)
if θ̄Λ ≤ λ̂L

2. For vH
τH
≤ vL

τL
< ∆, from Lemma 3 we know that SW (λL, λ

∗
H(λL)) is convex and decreasing

for λL ∈ [0, λL], and is convex and increasing in λL for λL ∈ [λL, λ̂L] and concave for

λL ≥ λ̂L. From Lemmas 1 and 3 we know that SW (λL, λ
∗
H(λL)) is minimized at λL and

maximized at λ∗L(0), since SW (λ∗L(0), 0) =
(√

vL
τL
−
√
c
)2
≥ SW (0, λ∗H(0)) =

(√
vH
τH
−
√
c
)2

when vL
τL
≥ vH

τH
.

Case 1: θ̄Λ < λL:

SW (λL, λ
∗
H(λL)) is convex and decreasing in λL for λL ∈ [0, λL) for vL

τL
< ∆ from Lemma 3.

This implies that (0, λ∗H(0)) maximizes SW (λL, λH) for λL ≤ λL and λH ≥ λ∗H(0).

Let us define F as the pair of points (λL, λ
∗
H(λ)) for λL ∈ [0,∞). We will check the local

neighborhood to find the optimal admission policy.

dSW (λL,λ
∗
H(λL))

dλL
< 0 for λL ∈ [0, λL), implies that

∂SW (λL,λ
∗
H(λL))

∂λL
< 0 for any λL on F , since:

∂SW (λL,λ
∗
H(λL))

∂λL
=

dSW (λL,λ
∗
H(λL))

dλL
as

∂SW (λL,λ
∗
H(λL))

∂λH
= 0 on F .
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∂SW (λL,λ
∗
H(λL))

∂λL
< 0 implies that λ∗L(λ∗H(λL)) < λL for λL ∈ [0, λL). As a result, for any

point (λL, λH) above the frontier F , i.e., λH > λ∗H(λL), the social welfare SW (λL, λH) is

decreasing in both λL and λH , since: (i) SW (λL, λH) is univariate concave in both λL and

λH , (ii) λ∗L(λH) lies below the frontier as λ∗L(λ∗H(λL)) < λL and λ∗L(λH) is decreasing in λH

and (iii) λ∗H(λL) is on the frontier. Therefore, the socially optimal admission policy does not

lie above the frontier F for λL ∈ [0, λL).

For λL ≤ λL, on any point (λL, λ
∗
H(λL)) on the frontier F , SW (λL, λ

∗
H(λL)) is decreasing

in λL, which implies that (0, λ∗H(0)) maximizes SW (λL, λH) for λL ∈ [0, λL). This implies

that the socially optimal admission policy (λSL, λ
S
H) is equal to (0, λ∗H(0)) for θ̄Λ ∈ [0, λL) and

θΛ ≥ λ∗H(0).

For λL ≤ λL, on any point (λL, λH) below the frontier F , i.e., λH < λ∗H(λL), SW (λL, λH) is

increasing in λH since SW (λL, λH) is concave in λH and the maximizer, λ∗H(λL), is on the

frontier. Also, recall that λ∗L(λ∗H(λL)) < λL. Therefore, for any point below the frontier there

are two potential cases:

(i) SW (λL, λH) is increasing in λH and decreasing in λL for λL ≥ λ∗L(λH), and,

(ii) SW (λL, λH) is increasing in both λL and λH for λL ∈ [0, λ∗L(λH)).

As a result, if θΛ < λ∗H(0) and θ̄Λ ∈ [λ∗L(θΛ), λL], then the socially optimal admission

policy, (λSL, λ
S
H), is (λ∗L(θΛ), θΛ). If θΛ < λ∗H(0) and θ̄Λ < λ∗L(θΛ), then the socially optimal

admission policy, (λSL, λ
S
H), is (θ̄Λ, θΛ).

The socially optimal admission policy for case 1 can be written as:

(λSL, λ
S
H) =



(0, λ∗H(0)) if θ̄Λ ∈ [0, λL)

and θΛ ≥ λ∗H(0)

(λ∗L(θΛ), θΛ) if θ̄Λ ∈ [λ∗L(θΛ), λL)

and θΛ ∈ [0, λ∗H(0))

(θ̄Λ, θΛ) if θ̄Λ ∈ [0, λ∗L(θΛ))

and θΛ ∈ [0, λ∗H(0))

(22)

Case 2: θ̄Λ ≥ λL and θΛ > Λ̃H(θ̄Λ):

Recall that, for vL
τL

< ∆, SW (λL, λ
∗
H(λL)) is convex and decreasing in λL for λL ≤ λL and

increasing in λL for λL ∈ [λL, λ
∗
L(0)) from Lemmas 1 and 3.

In Lemma 3.2, we define λ̃L as the smallest λL such that:

SW (0, λ∗H(0)) = SW (λ̃L, λ
∗
H(λ̃L)).
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Note that, λ̃L has to be within the interval (λL, λ
∗
L(0)), since

SW (λL, λ
∗
H(λL)) < SW (0, λ∗H(0)) < SW (λ∗L(0), 0),

and SW (λL, λ
∗
H(λL)) is increasing in λL for λL ∈ [λL, λ

∗
L(0)) (from Lemmas 1 and 3).

Using the above fact, and the definition of Λ̃H(θ̄Λ), we find that Case 2 can occur only if

θ̄Λ ≤ λ̃L, since Λ̃H(θ̄Λ) =∞ for θ̄Λ > λ̃L.

We analyze Case 2 under two subcases.

Case 2.a. θ̄Λ ∈ [λL, λ̃L] and θΛ ≥ λ∗H(0):

For any λL ∈ [λL, λ̃L], SW (λL, λ
∗
H(λL)) is increasing in λL and SW (λL, λ

∗
H(λL)) ≤ SW (0, λ∗H(0)).

Therefore, given θ̄Λ ∈ [λL, λ̃L] and θΛ ≥ λ∗H(0), the socially optimal policy, (λSL, λ
S
H), is equal

to (0, λ∗H(0)).

Case 2.b. θ̄Λ ∈ [λL, λ̃L] and Λ̃H(θ̄Λ) < θΛ ≤ λ∗H(0):

For this case we need to compare the two local maxima for SW (λL, λH), given λL ≤ θ̄Λ and

λH ≤ θΛ. From Lemma A1(b) we know that SW (λ∗L(θΛ), θΛ) ≥ SW (θ̄Λ, λ∗H(θ̄Λ)) for this

case. Therefore the socially optimal policy is (λ∗L(θΛ), θΛ).

We can write the socially optimal admission policy for Case 2 as:

(λSL, λ
S
H) =



(0, λ∗H(0)) if θ̄Λ ∈ [λL, λ̃L]

and θΛ ≥ λ∗H(0)

(λ∗L(θΛ), θΛ) if θ̄Λ ∈ [λL, λ̃L]

and θΛ ∈ [Λ̃H(θ̄Λ), λ∗H(0))

(23)

Case 3: θ̄Λ ≥ λL and θΛ ≤ Λ̃H(θ̄Λ):

From Lemmas 1 and 3, we know that SW (λL, λ
∗
H(λL)) is convex and decreasing in λL for

λL ∈ [0, λL), increasing in λL for λL ∈ (λL, λ
∗
L(0)) and decreasing in λL for λL > λ∗L(0).

Furthermore, when vL
τL

> vH
τH

, (λ∗L(0), 0) is the global maximizer of SW (λL, λH) since: (i) it

satisfies the first order conditions and (ii) SW (λ∗L(0), 0) =
(√

vL
τL
−
√
c
)2

> SW (0, λ∗H(0)) =(√
vH
τH
−
√
c
)2

. This implies that, for θ̄Λ ≥ λ∗L(0) the socially optimal admission policy,

(λSL, λ
S
H), is (λ∗L(0), 0).

Lemmas 1 and 3 imply that, for λL ∈ (λL, λ
∗
L(0)), SW (λL, λ

∗
H(λL)) is increasing in λL. There-

fore, on the frontier F , SW (λL, λH) is increasing in λL, since
∂SW (λL,λ

∗
H(λL))

∂λL
=

dSW (λL,λ
∗
H(λL))

dλL
.

This implies that λ∗L(λ∗H(λL)) > λL. As a result, on any point (λL, λH), below the frontier F ,

i.e., λH < λ∗H(λL), SW (λL, λH) is increasing in both λL and λH . Hence, for θ̄Λ ∈ (λL, λ
∗
L(0))

and θΛ ≤ λ∗H(θ̄Λ), the socially optimal admission policy, (λSL, λ
S
H), is (θ̄Λ, θΛ).
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Above the frontier F , SW (λL, λH) is decreasing in λH , since λ∗H(λL) lies on the frontier, and

SW (λL, λH) is univariate concave in λH . Which implies that the local maximum is on the

frontier when θ̄Λ ∈ (λL, λ
∗
L(0)) and θΛ ≥ λ∗H(θ̄Λ). Since SW (λL, λ

∗
H(λL)) is increasing in λL

for this region, (θ̄Λ, λ∗H(θ̄Λ)) is a local maximizer.

Lemma A1(b) implies that SW (θ̄Λ, λ∗H(θ̄Λ)) > SW (λ∗L(θΛ), θΛ) for θΛ < Λ̃H(θ̄Λ), which

implies that (θ̄Λ, λ∗H(θ̄Λ)) is the global maximizer of SW (λL, λH) when θ̄Λ ∈ (λL, λ
∗
L(0)) and

θΛ ∈ [λ∗H(θ̄Λ), Λ̃H(θ̄Λ)].

We can write the socially optimal admission policy as:

(λSL, λ
S
H) =



(θ̄Λ, θΛ) if θ̄Λ ∈ [λL, λ
∗
L(0)]

and θΛ ≤ λ∗H(θ̄Λ)

(θ̄Λ, λ∗H(θ̄Λ)) if θ̄Λ ∈ [λL, λ
∗
L(0)]

and θΛ ∈ [λ∗H(θ̄Λ), Λ̃H(θ̄Λ))

(λ∗L(0), 0) if θ̄Λ ≥ λ∗L(0)

(24)

Proof of Lemma 4: In order to find λ̄H(Λ) we first find the honesty constraints for the experts.

Recall that, given prices (pL, pH) under strategy (χ, β) the experts revenue is given by:

R(pL, pH ,Λ, χ, β) = pLβ(1− χ)Λ + pHβHχΛ.

In order for the expert not to cheat, i.e., recommend unnecessary major services, we need the

revenues to be non-increasing in χ. Hence we need:

∂R(pL, pH ,Λ, χ, β)

∂χ
= Λ(−pLβL + pHβH) ≤ 0.

Hence the honesty constraint for the expert is pLβL ≥ pHβH . Note that under an honest diagnostic

strategy χ = θ. Therefore, βH = λH
θΛ and βL = λL

(1−θ)Λ . Hence we can write the honesty constraint

as:
pLλL

(1− θ)Λ
≥ pHλH

θΛ
.

pH > pL implies βH < βL ≤ 1, due to the honesty constraint. This implies that consumers

with major problems have to be indifferent between joining and not joining the queue, hence earn

their reservation utilities of 0 from entering the queue. As a result, the only price that satisfies the

honesty constraint given (λL, λH) is p̄H(λL, λH).

We can rewrite the honesty constraint as:
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pLλL
1− θ

≥ p̄H(λL, λH)λH
θ

.

Note that, for pL < p̄L(λL, λH), the left hand side of the above constraint is increasing in pL, which

implies that the expert can increase his revenues without violating the honesty constraint by raising

the price pL to p̄L(λL, λH). The honesty constraint for a given that the expert serves all minor

problem consumers, λL = (1− θ)Λ, is then given by:

θΛ

λH
≥ p̄H((1− θ)Λ, λH)

p̄L((1− θ)Λ, λH)
.

The left hand side of the above constraint is decreasing in λH and the right hand side of the above

inequality is increasing in λH , since, p̄H(λL,λH)
p̄L(λL,λH) = 1 + (vH−vL)−c(τH−τL)

vL−cWq

(
θ,1,

λH
θΛ

) and the waiting time in the

queue, Wq, is increasing in λH . As a result, the gap in the above constraint shrinks with increasing

λH and the constraint binds at the maximum number of major problem consumers that can be

served under honesty, λ̄H(Λ), which proves part 1 of the Lemma.

2. With increasing θ, the left hand side of the honesty constraint, θΛ
λ̄H(Λ)

= p̄H((1−θ)Λ,λ̄H(Λ))

p̄L((1−θ)Λ,λ̄H(Λ))
,

increases, while the right hand side decreases since increasing θ leads to lower λL and Wq(·) is

increasing in λL. Increasing λ̄H(Λ), decreases the left hand side of the above constraint, while

increasing the right hand side as Wq(·) is increasing in λH . Together the above facts imply that

λ̄H(Λ) is increasing in θ.

3. We first show that first best provision cannot be achieved when the optimal policy is to serve

all customers, i.e., (λSL, λ
S
H) = ((1− θ)Λ, θΛ).

Recall that, the honesty constraint, pLβL ≥ pHβH , implies that the expert cannot serve all

major problem consumers (βH < 1) when pH > pL. Therefore, the only other option to achieve

first best provision is to serve all customers under a single price which is equal to p̄L((1− θ)Λ, θΛ).

However, we show that serving all customers under a single price does not maximize the expert’s

revenues. If the expert chooses to charge p̄H((1 − θ)Λ, λ̄H(Λ)) > p̄L((1 − θ)Λ, λ̄H(Λ)), then his

revenues are equal to p̄L((1 − θ)Λ, λ̄H(Λ))Λ. If the expert chooses to charge a single admission

price p̄L((1− θ)Λ, θΛ), then his revenues are equal to p̄L((1− θ)Λ, θΛ)Λ. Note that, λ̄H(Λ) < θΛ,

which implies that p̄L((1 − θ)Λ, θΛ) < p̄L((1 − θ)Λ, λ̄H(Λ)), since the prices are decreasing in

the cost of waiting and the cost of waiting is increasing in the number of customers joining the

queue. Hence, charging a higher price for the major treatment and pricing out some major problem

consumers provide higher revenues for the expert, which implies that the first best provision cannot

be achieved in equilibrium.

The socially optimal provision can be achieved only under honest service provision as over-

provision generates welfare loss. Due to the honesty constraint βLpL > βHpH , first best provision

can be achieved only when (λSL, λ
S
H) = (θ̄Λ, λ∗H(θ̄Λ)) and λ̄H(Λ) > λ∗H(θ̄Λ).

33



We show that there exists a unique threshold Λ̄s, such that λ̄H(Λ) ≥ λ∗H(θ̄Λ) for
λ∗L(0)

θ̄
≥ Λ > Λ̄s.

To show this is suffices to prove that λ∗H(θ̄Λ) and λ̄H(Λ) cross only once for Λ ∈
[
0,

λ∗L(0)

θ̄

]
. Recall

that, λ∗H(0) > 0, and λ∗H(λL) is decreasing in λL from Lemma 1. Reordering the honesty constraint

in equation 17 as λ̄H(Λ) = θΛ p̄L(θ̄Λ,λ̄H(Λ))

p̄H(θ̄Λ,λ̄H(Λ))
, and plugging in Λ = 0, we find that λ̄H(0) = 0.

Therefore, at Λ = 0, λ∗H(θ̄Λ) > λ̄H(Λ).

λ̄H(Λ) = θΛp̄L(θ̄Λ,λ̄H(Λ))

p̄H(θ̄Λ,λ̄H(Λ))
is increasing in Λ when Λp̄L(θ̄Λ, λ̄H(Λ)) is increasing in Λ, since, (i)

p̄H(θ̄Λ, λ̄H(Λ)) is decreasing in Λ, hence increasing Λ increases the right hand side of the above

equation, (ii) the left hand side is increasing in λ̄H(Λ), and, (iii) the right hand side is decreasing

in λ̄H(Λ).

For λH ≤ λ∗H(λL) and λL ≤ λ∗L(0), ∂p̄L(λL,λH)
∂λL

= ∂SW (λL,λH)
∂λL

− ∂(λH p̄H(λL,λH))
∂λL

> ∂SW (λL,λH)
∂λL

,

since p̄H(λL, λH) is decreasing in λL. We are analyzing the region where the socially optimal policy

is of the form (θ̄Λ, λ∗H(θ̄)). Recall that, in this region, SW (λL, λH) is increasing in λL for λL ≤ λ∗L(0)

and λH ≤ λ∗H(λL). This implies that Λp̄L(θ̄Λ, λ̄H(Λ)) is increasing in Λ for λ̄H(Λ) ≤ λ∗H(θ̄Λ). As

a result, we know that λ̄H(Λ) is increasing in Λ upto Λ̄S . Above Λ̄S , we know that λ̄H(Λ) does

not cross λ∗H(θ̄Λ) for Λ ≤ λ∗L(0)

θ̄
since, λ∗H(θ̄Λ) is decreasing in Λ and λ̄H(Λ) is increasing in Λ for

λ̄H(Λ) ≤ λ∗H(θ̄Λ).

The above result proves that, the first best provision can be achieved only if Λ ≥ Λ̄S .

Proof of Lemma 5: 1. We first show that for θ > c(τH−τL)
vH−vL , as Λ approaches 0, providing false

major treatment recommendations, χ = 1, provides higher revenues than providing honest service

recommendations, χ = θ. Also, we know from Lemma 4 that for Λ ≥ Λ̄s the expert can achieve

first best service provision and extract all the welfare through prices, hence maximize his revenues.

Therefore, for Λ ≥ Λ̄s providing honest service recommendations, χ = θ, provides higher revenues

for the expert.

Let us define Πh(Λ) as the maximum revenues that the expert can earn when he provides honest

service recommendations, χ = θ, for Λ ≤ Λ̄s.

Πh(Λ) = θ̄Λp̄L(θ̄Λ, λ̄H(Λ)) + λ̄H(Λ)p̄H(θ̄Λ, λ̄H(Λ)).

Recall that, λ̄H(Λ) = θΛ p̄L(θ̄Λ,λ̄H(Λ))

p̄H(θ̄Λ,λ̄H(Λ))
, therefore we can write Πh(Λ) as:

Πh(Λ) = Λp̄L(θ̄Λ, λ̄H(Λ)).

As Λ approaches to 0, Πc(Λ) > Πh(Λ):

limΛ→0
Πc(Λ)
Πh(Λ) = Λp̄C(Λ)

Λp̄L(θ̄Λ,λ̄H(Λ))
= p̄C(Λ)

p̄L(θ̄Λ,λ̄H(Λ))
,

= limΛ→0
θ(vH−vL)−c(τH−τL)+vL−cτL−cWq(1,0,Λ

Λ)
vL−cτL−cWq

(
θ, θ̄Λ
θ̄Λ
,
λ̄H (Λ)

θΛ

) = θ(vH−vL)−c(τH−τL)+vL−cτL
vL−cτL > 1, when θ > c(τH−τL)

vH−vL ,

since the waiting time in the queue, Wq(·), goes to 0 as Λ→ 0.
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As a result we know that Πc(0) > Πh(0) and Πc(Λ̄s) < Πh(Λ̄s). To complete the proof we need

to show that Πc(Λ) crosses Πh(Λ) only once within the interval [0, Λ̄s].

To prove this we show that ∂Πc(Λ)
∂Λ < ∂Πh(Λ)

∂Λ for all Λ in the interval. Note that Λ is a common

term both in Πc(Λ) and Πh(Λ), hence it suffices to focus only on p̄c(Λ) and p̄L(θ̄Λ, λ̄H(Λ)) and

show that ∂p̄c(Λ)
∂Λ < ∂p̄L(θ̄Λ,λ̄H(Λ))

∂Λ .
∂p̄c(Λ)
∂Λ =

θvH+θ̄vL−cτH−cWq(1,0,1)
∂Λ = −c∂Wq(1,0,1)

∂Λ .

∂p̄L(θ̄Λ,λ̄H(Λ))
∂Λ =

vL+−cτL−cWq

(
θ,1,

λ̄H (Λ)

θΛ

)
∂Λ = −c

∂Wq

(
θ,1,

λ̄H (Λ)

θΛ

)
∂Λ . Hence, it suffices to show that:

∂Wq

(
θ, 1, λ̄H(Λ)

θΛ

)
∂Λ

<
∂Wq (1, 0, 1)

∂Λ
.

Using the definition of Wq(·) from equation 4, we find that:

Wq

(
θ, 1,

λ̄H(Λ)

θΛ

)
=

θ̄Λτ2
L + λ̄H(Λ)τ2

H

1− θ̄ΛτL − λ̄H(Λ)τH
,

and,

Wq (1, 0, 1) =
Λτ2

H

1− ΛτH
.

We now define the waiting time in the queue as a function of the number of customers receiving

major and minor treatment, λH and λL. Let

wq(λL, λH) =
λHτ

2
H + λLτ

2
L

1− λLτL − λHτH
.

Note that, wq(·) is a convex and increasing function of both λL and λH . Furthermore, wq(·) is

super-modular, i.e.,
∂2wq(λL,λH)
∂λL∂λH

> 0.

Using the definition of wq(·) we get:

Wq

(
θ, 1,

λ̄H(Λ)

θΛ

)
= wq(θ̄Λ, λ̄H(Λ))

and

Wq (1, 0, 1) = wq(0,Λ).

To prove the result we need to show that
∂wq(θ̄Λ,λ̄H(Λ))

∂Λ <
∂wq(0,Λ)

∂Λ .
∂wq(θ̄Λ,λ̄H(Λ))

∂Λ =
∂wq(θ̄Λ,λ̄H(Λ))

∂λL

∂(θ̄Λ)
∂Λ +

∂wq(θ̄Λ,λ̄H(Λ))
∂λH

∂λ̄H(Λ)
∂Λ

<
∂wq(θ̄Λ,θΛ)

∂Λ =
∂wq(θ̄Λ,θΛ)

∂λL

∂(θ̄Λ)
∂Λ +

∂wq(θ̄Λ,θΛ)
∂λH

∂(θΛ)
∂Λ =

θ̄τ2
L+θτ2

H

(1−θ̄Λ−θΛ)2 , due to the following:

(i)
∂wq(θ̄Λ,λ̄H(Λ))

∂λL
<

∂wq(θ̄Λ,θΛ)
∂λL

since, wq(λL, λH) is super-modular and λ̄H(Λ) < θΛ.

(ii)
∂wq(θ̄Λ,λ̄H(Λ))

∂λH
<

∂wq(θ̄Λ,θΛ)
∂λH

since, wq(·) is convex in λH and λ̄H(Λ) < θΛ, and,
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(iii) ∂λ̄H(Λ)
∂Λ < θ = ∂(θΛ)

∂Λ . Since λ̄H(Λ)
θΛ = p̄L

p̄H
and p̄L(θ̄Λ,λ̄H(Λ))

p̄H(θ̄Λ,λ̄H(Λ))
is decreasing in Wq(·) and Wq(·) is

increasing in Λ since λ̄H(Λ) is increasing in Λ. ∂λ̄H(Λ)
∂Λ ≥ θ implies that λ̄H(Λ)

θΛ is increasing, which

implies that p̄L(θ̄Λ,λ̄H(Λ))

p̄H(θ̄Λ,λ̄H(Λ))
is increasing, which is a contradiction. Therefore, ∂λ̄H(Λ)

∂Λ < θ.

∂wq(0,Λ)
∂Λ =

τ2
H

(1−ΛτH)2 ≥
θ̄τ2
L+θτ2

H

(1−θ̄Λ−θΛ)2 >
∂wq(θ̄Λ,λ̄H(Λ))

∂Λ for θ ∈ (0, 1). Which proves the result.

Proof of Proposition 2: 1. From Proposition 1, we know that for Λ ≥ λ̂L
1−θ , the socially optimal

policy is to only admit consumer with minor problems, i.e., λSH = 0. By setting the price for major

treatment, ph = ∞, the expert not only prices out all major type consumers but also credibly

signals his honesty to the market, since a consumer receiving a major treatment diagnosis will not

join the queue.

For Λ ∈
[
λ̂L
1−θ ,

λ∗L(0)
1−θ

]
, the socially optimal admission policy is to admit all minor problem

consumers, i.e., (λSL, λ
S
H) = (θ̄Λ, 0). By charging p̄L(θ̄Λ, 0) the expert can serve all minor problem

consumers and achieve the socially optimal service provision. Since the price p̄L(θ̄Λ, 0) extracts

consumers’ welfare, the expert also maximizes revenues.

For Λ >
λ∗L(0)
1−θ , the socially optimal policy is (λSL, λ

S
H) = (λ∗L(0), 0). The expert can achieve the

socially optimal service provision by pricing out all major problem consumers and serving λ∗L(0)

consumers with minor problems by charging p̄L(λ∗L(0), 0). As in the previous case, p̄L(λ∗L(0), 0)

extracts the consumers’ welfare and maximizes the expert’s revenues.

2. From Lemma 5, we know that the expert is better off by providing honest diagnosis for

Λ > Λ̄c. From Lemma 4, we know that for Λ > Λ̄s, the expert can achieve the first best service

provision.

Therefore, when Λ ∈
[
Λ̄s,

λ̂L
(1−θ)

]
, the expert can charge p̄L(θ̄Λ, λ∗H(θ̄Λ)) for the minor treatment,

p̄H(θ̄Λ, λ∗H(θ̄Λ)) for the major treatment, and, achieve the socially optimal service provision and

maximize his revenues.

For Λ ∈
[
Λ̄c, Λ̄s

]
, from Lemma 4 and Lemma 5 we know that the expert cannot achieve the

socially optimal (first best) service provision, but providing honest service recommendations, χ = θ,

is still optimal (from Lemma 5). By charging p̄L(θ̄Λ, λ̄H(Λ)) and p̄H(θ̄Λ, λ̄H(Λ)) the expert achieves

the maximum revenues under honest service provision, since λ̄H(Λ) is the maximum number of

major problem consumers that can be served under honesty (χ = θ) when the potential demand

is Λ, and the revenues are increasing in both the number of minor and major problem consumers

served since λ̄H(Λ) < λ∗H(θ̄Λ) and θ̄Λ < λ∗L(0). From Lemma 5, we know that the maximum

revenues under honest service provision is higher than the maximum revenues under over-provision

(χ = 1). Therefore, the expert maximizes his revenues by charging p̄L(θ̄Λ, λ̄H(Λ)) for the minor

treatment, p̄H(θ̄Λ, λ̄H(Λ)) for the major treatment and serving all minor problem consumers, θ̄Λ,

and λ̄H(Λ) major problem consumers.

3. From Lemma 5, we know that over-provision, χ = 1, provides higher revenues for the expert

compared to honest service recommendation χ = θ when Λ < Λ̄c. The experts revenue function
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under over provision is given by Πc(Λ). Note that,

Πc(Λ) = I(Λ > λ∗c)

√θvH + (1− θ)vL
τH

−
√
c

2

+ I(Λ ≤ λ∗c)Λ ((θvH + (1− θ)vL)− cWH(1, 0, 1))

is (i) increasing and concave in Λ for Λ ≤ λ∗c since WH(1, 0, 1) is convex in Λ and λ∗c is the unique

maximizer of Λ ((θvH + (1− θ)vL)− cWH(1, 0, 1)), and, (ii) constant in Λ for Λ > λ∗c . Given that

the expert will choose over-provision, χ = 1, it is optimal to treat all customers if Λ < λ∗c and only

λ∗c customers otherwise.

For Λ < Λ̄c, there are two possibilities:

I. If Λ < min{Λ̄c, λ∗c}, the revenue maximizing admission rate is Λ. By charging p̄c(Λ) for the

major treatment, the expert signals to the market that he will diagnose all customers with a major

problem, χ = 1, and treat them with a major treatment, since p̄c(Λ) is less than p̄H(θ̄Λ, λ̄H(Λ))

which is the lowest price for the major treatment satisfying the honesty constraint. By charging

any pL that is less than p̄c(Λ) the expert ensures that he will choose not to provide the minor

treatment, which implies that λeL = 0.

II. If λ∗c < Λ < λ̄c, the revenue maximizing admission rate is λ∗c . Again, by charging p̄c(λ
∗
c) for

the major treatment, the expert signals to the market that he will diagnose all customers with a

major problem, χ = 1, and treat them with a major treatment. Charging any pL that is less than

p̄c(Λ) ensures that the expert will choose not to provide the minor treatment, which implies that

λeL = 0.
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