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Abstract. In 1964 A. Garsia gave a stunningly brief proof of a useful maximal inequality
of E. Hopf. The proof has become a textbook standard, but the inequality and its proof are
widely regarded as mysterious. Here we suggest a straightforward first step analysis that may
dispel some of the mystery. The development requires little more than the notion of a random
variable, and, the inequality may be introduced as early as one likes in a graduate probability
course. The benefit is that one gains access to a proof of the strong law of large numbers that
is pleasantly free of technicalities or tricky ideas.

1. EXPLORATION AND FIRST STEP ANALYSIS. At first we consider an infi-
nite sequence X, X1, X2, . . . of independent, identically distributed random variables
that we assume to have a finite first moment, so in symbols E |X | < ∞. According to
custom, we let Sk = X1 + X2 + · · · + Xk ; we think of the index k as time, and we call
the sequence {Sk, 1 ≤ k < ∞} a random walk (starting at S0 = 0). We also introduce
the maximal process

Mn
def= max(0, S1, S2, . . . , Sn) for 1 ≤ n < ∞, (1)

and we emphasize two points: (1) we include zero as a maximand and (2) we do not
take absolute values of the partial sums.

There are many good, nonmysterious reasons for being interested in Mn , but we
leave those reasons aside for the moment. Our first goal is simply to see what one can
say about Mn , if we just take one step at a time. The usual aim of such an exploration
is to find a pleasing recurrence relation.

It would be nice if, after taking our first step, we were to have the identity

Mn(ω) = X1 + max(0, X2, X2 + X3, . . . , X2 + X3 + · · · + Xn), (2)

but it is easy to find examples that show that this need not be true. Still, one can ask
when it is true, and, if we ponder that possibility for a moment, it may not take long to
guess that it is true for all ω such that Mn(ω) > 0.

This is a reasonable conjecture, and in two steps one can tease out a confirmation.
If Mn(ω) > 0, then random walk has a positive maximum at some time in the interval
1 ≤ k ≤ n. If this maximum occurs at time k = 1, then Mn = X1, the second summand
of (2) is zero, and the identity holds. Alternatively, if the strictly positive maximum is
attained at some 1 < k ≤ n, then the second summand of (2) is strictly positive. In this
case, we can remove the leading zero from the set of maximands, and we see that the
identity (2) again holds.

For ω such that Mn(ω) > 0 we do have our recursion (2), and it expresses a certain
symmetry which we can emphasize if we set

M+
n

de f= max(0, X2, X2 + X3, . . . , X2 + X3 + · · · + Xn+1).
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The motivation here—and one cause for the use of the word symmetry—is that for
independent identically distributed sequences (or even for stationary sequences) we
have “distributional invariance under the plus-operation”; specifically, we have the
distributional equality

M+
k

d= Mk for all 1 ≤ k < ∞.

Now, if we use an indicator function to bundle up our assumption Mn(ω) > 0, then
from our discussion of (2) we have for all ω that

Mn1(Mn > 0) = X11(Mn > 0) + M+
n−11(Mn > 0)

≤ X11(Mn > 0) + M+
n 1(Mn > 0),

where in the second line we used M+
n−1 ≤ M+

n , which follows just from the definition
of M+

n . Next, we collect terms

(Mn − M+
n )1(Mn > 0) ≤ X11(Mn > 0),

and we also note by the non-negativity of M+
n that we have the trivial bound

(Mn − M+
n )1(Mn ≤ 0) ≤ 0.

Summing the last two equations gives us a key inequality

Mn − M+
n ≤ X11(Mn > 0). (3)

One should note a curious fact of this derivation. So far, we have not used any
properties of the random sequence {X1, X2, . . . }, so the inequality (3) holds without
restriction. What we have is simply a statement about real numbers, and, as far as pure
logic goes, the language of random variables was unnecessary here. Nevertheless, the
relation (3) does emerge naturally when one is guided by the imagery of random walk
and the traditional reasoning of first step analysis.

When we take the expectation in (3) we have our main result. It may look special
and modest, but it is general and powerful.

Lemma 1 (Garsia’s L1 Maximal Inequality). If {X1, X2, . . . , Xn} are integrable
random variables such that EMn = EM+

n , then we have

0 ≤ E[ X11(Mn > 0)]. (4)

The condition EMn = EM+
n certainly holds if the random variables {X1, X2, . . . } are

independent and identically distributed, but one does not need so much. Stationarity
of {X1, X2, . . . } would be enough.

In fact, the lemma stated here is rather different from the Hopf maximal inequality
that is given in Garsia [2], but, except for the motivation and exposition, the logic of
the proof is unchanged. It is curious—but perhaps only curious—that in the present
formulation one sees that the exchangeability of {X1, X2, . . . , Xn+1} would suffice for
the maximal inequality (4) to hold.
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2. PASSAGE TO A MORE CONVENTIONAL FORM. The inequality (4) does
not have the shape of more familiar maximal inequalities like those of Lévy or Kol-
mogorov, but it is easy to pass from (4) to an inequality with a more conventional
appearance. If we take a constant λ > 0 and apply inequality (4) to the random vari-
ables X ′

i = Xi − λ, then we have

0 ≤ E

[
(X1 − λ)1

[
max
0≤k≤n

{0, S1 − λ, S2 − 2λ, . . . , Sn − nλ} > 0

]]

= E

[
(X1 − λ)1

[
max
1≤k≤n

{S1, S2/2, . . . , Sk/k, . . . , Sn/n} > λ

]]
.

By linearity this implies

P

[
max
1≤k≤n

{S1, . . . , Sk/k, . . . , Sn/n} > λ

]
≤ 1

λ
E(|X1|),

which is a maximal inequality of the classical form; specifically, it is a weak-type L1

maximal inequality. If we let n → ∞, then we have an even nicer version

P

[
max

1≤k<∞
{Sk/k} ≥ λ

]
≤ 1

λ
E(|X1|). (5)

3. PROOF OF THE STRONG LAW OF LARGE NUMBERS. The SLLN for
bounded random variables is something that one can take as given; it is often proved in
the earliest days of a graduate course in probability. It is most pleasingly obtained as
an immediate consequence of Hoeffding’s inequality and the Borel–Cantelli lemma,
but it is more commonly proved by applying Markov’s inequality to the fourth power
of Sn/n.

The SLLN for bounded random variables is a baby theorem, and for a genuine adult
strength SLLN one wants to reduce the moment assumption to the logical minimum.
Here we take {X1, X2, . . .} to be a sequence of independent, identically distributed
random variables such that E(|Xi |) < ∞ and E(Xi ) = 0. Our goal is to show that
Sn/n converges to zero with probability one.

The recipe has just three ingredients: truncation, the SLLN for bounded random
variables, and the L1 maximal inequality. We first fix ε > 0, and then for a constant
K > 0 we consider the truncation representation

Xi = Xi1(|Xi | ≤ K ) + Xi1(|Xi | > K )
de f= X ′

i (K ) + X ′′
i (K ).

By the SLLN for bounded random variables, we have with probability one that

lim sup
n→∞

1

n
Sn = lim sup

n→∞

{
1

n
S′

n(K )+ 1

n
S′′

n (K )

}
≤ E[X ′

1(K )] + sup
1≤n<∞

|S′′
n (K )/n|.

Since E X1 = 0, the dominated convergence theorem tells us there is an K0 such that
for all K ≥ K0 we have |E X ′

1(K )| ≤ ε. Hence for all K ≥ K0 the L1 maximal in-
equality (5) gives us

P

(
lim sup

n→∞

1

n
Sn > 2ε

)
≤ 1

ε
E[ |X ′′

i (K )| ].
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If we let K → ∞, then the upper bound goes to zero, so when we recall that ε > 0 is
arbitrary, we have

lim sup
n→∞

1

n
Sn ≤ 0 with probability one.

Finally, by applying the same argument to the sequence {−Xi : 1 ≤ i < ∞}, one gets
a corresponding lower bound on the limit infimum. The two bounds complete the proof
of the strong law of large numbers.

4. CONNECTIONS AND COMMENTS. In comparison to the most often quoted
proofs of the SLLN, the proof via an L1 maximal inequality has two notable benefits:
(a) one only needs a naive, fixed-level truncation, and (b) the finish via the maximal
inequality needs no further trickery.

Kolmogorov’s proof uses a maximal inequality that is of comparable complexity
to (5), but the finish is not nearly so quick. Typically, one uses a “moving truncation”
of the form Xk = Xk1(|Xi | ≤ k) + Xk1(|Xk | > k), a clever moment calculation, a
Borel–Cantelli argument, and, for the coup de grâce, a fact about real sequences such
as Kronecker’s lemma.

The argument introduced by Etemadi [1] is shorter than Kolmogorov’s, and it also
covers new ground. Still, it has its own subtleties. First, a sagacious restriction to non-
negative random variables makes it possible to restrict attention to proving that one
has almost sure convergence to the mean when one moves along subsequences of the
form nk = �(1 + δ)k	, δ > 0. After introducing an exponential moving truncation one
is then left with “just” a moment calculation and a Borel–Cantelli argument. Never-
theless, the moment calculation is a clever one which one could easily miss, or fail to
remember.

The adult strength SLLN is a special case of the ergodic theorem, but this is a lesson
that tends to come toward the end of a traditional course in probability theory, if at all.
Here we completely sidestepped the language of ergodic theory and kept close to the
concepts that are already familiar to beginners.

The lemma of Hopf [3] that motivated Garsia [2] had it origins in a proof due to
Yosida and Kakutani [6] of the classical Birkhoff ergodic theorem, for which there are
now many proofs. If one were to deal openly with ergodic theory when first introducing
the SLLN, then one could use the streamlined arguments of Katznelson and Weiss [4]
or Kean and Petersen [5] to prove the SLLN. This is certainly a sensible possibility,
but the path would probably be a bit more slippery for beginners than the path that
proceeds through Lemma 1 and the L1 maximal inequality (5).
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Using Infinitesimals to Differentiate Secant and Tangent

For this figure, let dθ be an infinitely small increment of the angle θ at vertex V . Under Keisler’s mi-
croscope, which has infinite magnification [1], we see corresponding infinitely small changes d tan θ and
d sec θ in the lengths of the side opposite θ and the hypotenuse. The two rays of the infinitely small angle
appear parallel under the microscope, and the tiny arc of the circle centered at V passing through W ap-
pears as a straight line. The length of the arc is the radius times the radian measure of the angle; thus, it is
sec θ dθ .

1

tansec

V

W

W

sec d

dtan

dsecθ

θ θ θ

θ

θ

θ

θ

The big triangle and the infinitely small triangle are similar. Thus,

d sec θ

sec θ dθ
= tan θ, and so

d

dθ
sec θ = sec θ tan θ

and

d tan θ

sec θ dθ
= sec θ, and so

d

dθ
tan θ = sec2 θ.

The derivatives of sine and cosine follow as corollaries.
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