Bowen Lou

Bowen Lou
  • Doctoral Candidate

Contact Information

  • office Address:

    527.8 Jon M. Huntsman Hall
    3730 Walnut Street
    Philadelphia, PA 19104

Research Interests: Digitization, Innovation, Natural Language Processing Application in Business, Network Science

Links: Personal Website

Overview

Bowen Lou is a rising fifth-year doctoral candidate in the Operations, Information and Decisions department of the Wharton School, specialized in information systems.

His research lies in Economics of Innovation and Digitization, and attempts to offer a better understanding of how firms can leverage those cutting-edge digitization tools to create economic values for their innovation, labor demand and productivity. To this end, he delves into large-scale texts about individuals and organizations from social media and various digital publications (e.g., reviews, resumes, patents, financial reports). Bowen is passionate about proposing and applying eclectic but robust solutions from natural language processing and network science in order to understand latent patterns and extract managerial insights.

Prior to joining Wharton, Bowen was a research programmer at Knowledge Lab in Computation Institute and a research assistant at Booth School of Business for most of his time in Chicago. He also has worked in technology and banking corporations including Intel and China Guangfa Bank. Bowen received BEng in Information Security from Shanghai Jiao Tong University, and MS in Computer Science from University of Chicago.

Continue Reading

Research

  • Lynn Wu, Bowen Lou, Lorin M. Hitt (2019), Data Analytics Supports Decentralized Innovation, Management Science, Forthcoming.

    Abstract: Data analytics technology can accelerate the innovation process by enabling existing knowledge to be identified, accessed, combined and deployed to address new problem domains. However, like prior advances in information technology, the ability of firms to exploit these opportunities depends on a variety of complementary human capital and organizational capabilities. We focus on whether analytics is more valuable in firms where innovation within a firm has decentralized groups of inventors or centralized ones. Our analysis draws on prior work measuring firm analytics capability using detailed employee-level data and matches these data to metrics on intra-firm inventor networks that reveal whether a firm’s innovation structure is centralized or decentralized. In a panel of 1,864 publicly-traded firms from the years 1988 to 2013, we find that firms with a decentralized innovation structure have a greater demand for analytics skills and receive greater productivity benefits from their analytics capabilities, consistent with a complementarity between analytics and decentralized innovation. We also find that analytics helps decentralized structures to create new combinations and reuse of existing technologies, consistent with the ability of analytics to link knowledge across diverse domains and to integrate external knowledge into the firm. Furthermore, the effect primarily comes from the analytics capabilities of the non-inventor employees as opposed to inventors themselves. These results show that the benefit of analytics on innovation depends on existing organizational structures. Similar to the IT-productivity paradox, these results can help explain a contemporary analytics-innovation paradox—the apparent slowdown in innovation despite the recent increase in analytics investments.

  • Lynn Wu, Lorin M. Hitt, Bowen Lou (2018), Data Analytics Skills, Innovation and Firm Productivity, Management Science, Forthcoming.

    Abstract: We examine the relationship between data analytics capabilities and innovation using detailed firm-level data. To measure innovation, we first utilize a survey to capture two types of innovation practices, process improvement and new technology development for 331 firms. We then use patent data to further analyze new technology development for a broader sample of more than 2,000 publicly-traded firms. We find that data analytics capabilities are more likely to be present and are more valuable in firms that are oriented around process improvement and that create new technologies by combining a diverse set of existing technologies than they are in firms that are focused on generating entirely new technologies. These results are consistent with the theory that data analytics are complementary to certain types of innovation because they enable firms to expand the search space of existing knowledge to combine into new technologies, as well as prior theoretical arguments that data analytics support incremental process improvements. Data analytics appear less effective for developing entirely new technologies or creating combinations involving a few areas of knowledge, innovative approaches where there is either limited data or limited value in integrating diverse knowledge. Overall, our results suggest firms that have historically focused in specific types of innovation—process innovation and innovation by diverse recombination—may become the leading investors in data analytics and receive the most benefits from it.

  • Aaron Gerow, Bowen Lou, Eamon Duede, James Evans (2015), Proposing Ties in a Dense Hypergraph of Academics, Social Informatics. 10.1007/978-3-319-27433-1_15

Teaching

Instructor

  • Wharton Tech Camp (PhD), Summer 2018

Teaching Assistant

  • OIDD 314/662 Enabling Technologies (Undergraduate & MBA), Fall 2015, Fall 2016, Fall 2017
  • OIDD 101 Introduction to Operations, Information & Decisions (Undergraduate), Spring 2019

Awards and Honors

Certificate in College and University Teaching, 2018

Paul R. Kleindorfer Scholar Award, 2018

Wharton George James Travel Award, 2017, 2018

Best Conference Paper Award Finalist, CIST, INFORMS, 2017

Graduate and Professional Student Assembly (GAPSA) Research Travel Grant, 2017

Wharton Risk Center Russell Ackoff Doctoral Student Fellowship, 2016

Wharton Doctoral Fellowship, 2015-Present

 

    Activity

    Latest Research

    All Research