Lynn Wu

Lynn Wu
  • Associate Professor of Operations, Information and Decisions

Contact Information

  • office Address:

    3730 Walnut Street
    572 Jon M. Huntsman Hall
    Philadelphia, PA 19104

Research Interests: Artificial Intelligence, Enterprise Social Media, Innovation, Entrepreneurship, Productivity

Links: CV, Google Scholar Profile, Twitter, LinkedIn

Overview

Lynn Wu is an Associate Professor at the Wharton School of the University of Pennsylvania, where she teaches MBA, undergraduate, and doctoral courses on the transformative impact of emerging technologies on business and society.

Her research focuses on the intersection of artificial intelligence, analytics, and innovation, exploring how these technologies reshape business strategy, productivity, and workforce dynamics. Specifically, her work spans three core areas:

  1. AI and Innovation: Examining the effects of AI on firm-level innovation, labor outcomes, and productivity across both large enterprises and startups.
  2. Digital Platforms and Bias: Investigating how enterprise social media and AI-driven platforms influence employee performance, career trajectories, entrepreneurial success, and the emergence of new biases associated with technological adoption.
  3. Antitrust and Policy: Studying the antitrust implications of emerging technologies and advising on related matters for various agencies such as the U.S. Department of Justice.

Lynn’s research has been published in leading journals across economics, management, and computer science, earning numerous accolades, including Early Career Awards from INFORMS and AIS, as well as best paper awards from Information Systems Research, ICIS, CHITA, and Kauffman. Her work has been widely cited by major media outlets, including NPR, The Wall Street Journal, The New York Times, The Economist, and Forbes. She is also a recipient of Wharton’s Dean’s Teaching Award for her excellence in education.

Lynn holds undergraduate degrees in Finance and Computer Science from MIT, a master’s degree in Computer Science from MIT, and a Ph.D. in Management Science from MIT Sloan School of Management. Prior to academia, she worked as a software engineer and research scientist at the MIT AI Lab and IBM. She has also collaborated with leading technology companies (e.g., IBM, Google, Meta, SAP), advised government organizations (e.g., the Department of Justice, the World Bank), and consulted for innovative startups.

With a unique blend of academic rigor and industry expertise, Lynn is passionate about uncovering insights at the frontier of technology and business, helping organizations navigate the challenges and opportunities of a rapidly evolving digital economy.

Continue Reading

Research

  • Lynn Wu and Ranthsbotham, Sam (2024), Can AI Help Your Company Innovate? It Depends, Harvard Business Review, 102 (4).

  • Lynn Wu, Bowen Lou, Lorin M. Hitt (2024), Innovation Strategy After IPO: How Data Analytics Mitigates the Post-IPO Decline in Innovation, Management Science.

    Abstract: We examine the role of data analytics in facilitating innovation in firms that have gone through an initial public offering (IPO). It has been documented that an IPO is associated with a decline in innovation despite the infusion of capital from the IPO that should have spurred innovation. Using patent data for over 2,000 firms, we find that firms that possess or acquire data analytics capability experience a smaller decline in innovation compared to similar firms that have not acquired that capability. Moreover, we find this sustained rate of innovation is driven principally by the continued development of innovations that either combine existing technologies into new ones or reuse existing innovations by applying them to new problem domains—both forms of innovation that are especially well-supported by analytics. Our results suggest that the increased deployment of analytics may reduce some of the innovation decline of IPOs, and that investors and managers can potentially mitigate post-IPO reductions in innovative output by directing newly acquired capital to the acquisition of analytics capabilities.

  • bryan hong and Lynn Wu (2023), How Robots Can Enhance Performance Management for Humans, Sloan Management Review, 64 (4), pp. 1-3.

    Abstract: New research finds that individuals’ performance can be measured more accurately when robots work alongside them.

  • Xiaoning Wang and Lynn Wu (2023), Social Media Alleviates Venture Capital Funding Inequality for Women and Less Connected Entrepreneurs, Management Science, 70 (2).

    Abstract: Startups are increasingly using social media to signal quality and provide information to potential investors. However, the effectiveness of social media on VC financing is likely to be heterogeneous, differing by demographic and network characteristics of the venture management team. In this paper, we examine whether social media use can improve funding outcomes for firms founded by women and by other people also lacking connections to the investor network, two groups who face greater difficulties in securing VC financing. Using Twitter data and data on VC investment in startups from Crunchbase, we explore the interaction effect between Twitter usage and gender, and between Twitter usage and the network constraint measure. Overall, we show that social media can mitigate some disparities in financing experienced by these firms through improving information access. We find this effect is stronger for first-time entrepreneurs than for experienced ones, stronger for attracting new investors than repeat ones, and stronger in more competitive markets. Collectively, these results suggest that social media could primarily help women and less-connected individuals obtain financing by alleviating information asymmetry between founders and investors.

  • Victoria Sevcenko, Lynn Wu, Olenka Kacperczyk, Sendil Ethiraj (2022), Surplus Division between Labor and Capital: A Review and Research Agenda, Academy of Management Annals, 16 (1).

    Abstract: The division of firm surplus between labor and shareholders, and its impact on firms’ value creation, are central topics in strategy theory and practice. Early studies of value appropriation within firms devoted considerable attention to the dynamics of bargaining between labor— typically, organized labor—and the owners of capital. Since the 1960s, however, a decline in unionization across most of the major economies and a series of technological and economic changes have led to profound shifts in the bargaining process between labor and capital. This review synthesizes the findings of prior literature and argues for three increasingly important and often-overlooked consequences of these changes. First, individual bargaining has dramatically expanded the range of worker characteristics, values, and preferences that can now be accommodated in employment arrangements. Second, surplus division has become a strategic variable that organizations can differentiate on. Third, labor-market institutions have become more varied, and their role in setting the terms of negotiation has become more prominent.

  • Jay Dixon, bryan hong, Lynn Wu (2021), The Robot Revolution: Managerial and Employment Consequences for Firms, Management Science, 67 (9).

    Abstract: As a new general-purpose technology, robots have the potential to radically transform industries and affect employment. Preliminary empirical studies using industry and geographic region-level data have shown that robots differ from prior general-purpose technologies and predict substantial negative effects on employment. Using novel firm-level data, we show that investments in robotics are associated with increased employee turnover, but also an increase in total employment within the firm. Examining changes in labor composition, we find that manager headcount has decreased but non-managerial employee headcount has increased, suggesting that robots displace managerial work that in prior waves of technology adoption was considered more difficult to replace. However, we also find that firms are more likely to hire managers from outside the firm and invest in additional training, suggesting that firms require different employee skills as the nature of work changes with robot investment. We also provide additional evidence that robot investments are not generally motivated by the desire to reduce labor costs but are instead related to an increased focus on improving product and service quality. With respect to changes in the way work is organized within the firm, we find that robot adoption predicts organizational changes in ways that differ from prior technologies. While information technology has generally been found to decentralize decision-making authority within organizational hierarchies, we find that robots can either centralize or decentralize decision-making, depending on the task. Overall, our results suggest that the impact of robots on employment is more nuanced than prior studies have shown.

  • Lynn Wu and Gerald Kane (2021), Network-biased Technical Change: How Information Management Tools Overcome Some Biases but Exacerbate Others, Organization Science, 32 (2), pp. 273-292.

    Abstract: Organizations have long sought to improve employee performance by managing knowledge more effectively. In this paper, we test whether the adoption of digital tools for expertise search and access within an organization, often referred to as a support to an organization’s transactive memory system (TMS), improves employee performance. Using three years of data from more than 1,000 employees at a large professional services firm, we find that adopting an expertise search tool improves employee performance on financial dimensions, which results from improvements in network connections and information diversity. However, it does not affect all employees equally. We find that two types of employees appear to benefit from adoption more than others. First, traditionally information-disadvantaged employees (junior employees and women) appear to gain more from the adoption of Digital TMS tools (DTMS) because the tool overcomes the institutional barriers to resource access that these employees face in searching for knowledge. Second, employees with greater structural capital at the time of adoption also benefit more, because the tool eliminates natural networking barriers present in traditional offline interpersonal networks, allowing these employees to network more strategically. We also find that communication volume increases more for junior employees and women and increases it less for people with strong social networks, suggesting the mechanisms that benefit people with strong networks differ from those for women and junior employees, a finding consistent with our theoretical mechanisms. Taken together, an important implication of these findings is that implementing and adopting expert search tools for TMS has the potential to shift organizational sources of power and influence away from demographic-based characteristics and toward network-based ones—a characteristic we call “network-biased technical change.”

  • Bowen Lou and Lynn Wu (2021), AI on Drugs: Can Artificial Intelligence Accelerate Drug Development? Evidence from a Large-scale Examination of Bio-pharma Firms, MISQ, 45 (3).

    Abstract: Advances in artificial intelligence (AI) could potentially reduce the complexities and costs in drug discovery. Using a resource-based view, we develop an AI innovation capability and find it to help firms identify new drug-target pairs for preclinical studies. The effect is particularly pronounced for developing new drugs whose mechanism of impact on a disease is known and for drugs at the medium level of chemical novelty. However, AI is less helpful in developing drugs when there is no existing therapy. AI is also less helpful for drugs that are either entirely novel or those that are incremental “me-too” drugs. Examining AI skills, a key component of AI innovation capabilities, we find that a main effect of AI innovation capabilities come from employees possessing the combination of AI skills and domain expertise in drug discovery as opposed to employees possessing AI skills only. Having the combination is key because developing and improving AI tools is an iterative process requiring synthesizing inputs from both AI and domain experts. Taken together, our study sheds light on both the advantages and the limitations of using AI in drug discovery and how to effectively manage AI resources for drug development.

  • Lynn Wu, Lorin M. Hitt, Bowen Lou (2020), Data Analytics Skills, Innovation and Firm Productivity, Management Science, 66 (5), pp. 1783-2290.

    Abstract: We examine the relationship between data analytics capabilities and innovation using detailed firm-level data. To measure innovation, we first utilize a survey to capture two types of innovation practices, process improvement and new technology development for 331 firms. We then use patent data to further analyze new technology development for a broader sample of more than 2,000 publicly-traded firms. We find that data analytics capabilities are more likely to be present and are more valuable in firms that are oriented around process improvement and that create new technologies by combining a diverse set of existing technologies than they are in firms that are focused on generating entirely new technologies. These results are consistent with the theory that data analytics are complementary to certain types of innovation because they enable firms to expand the search space of existing knowledge to combine into new technologies, as well as prior theoretical arguments that data analytics support incremental process improvements. Data analytics appear less effective for developing entirely new technologies or creating combinations involving a few areas of knowledge, innovative approaches where there is either limited data or limited value in integrating diverse knowledge. Overall, our results suggest firms that have historically focused in specific types of innovation—process innovation and innovation by diverse recombination—may become the leading investors in data analytics and receive the most benefits from it.

  • C. Eesley and Lynn Wu (2020), For Startups, Adaptability and Mentor Network Diversity can be Pivotal: Evidence from a Randomized Experiment on a MOOC Platform, MISQ, 44 (5), pp. 661-697.

    Abstract: Entrepreneurs leading digital ventures are often advised to be adaptable. However, research on how to pursue adaptable strategies and whether such strategies improve short- or long-term digital venture outcomes is sparse. By utilizing the ability to control content presentation and to measure outcomes through a course using a MOOC platform, we can introduce exogenous variation in strategies and mentorship characteristics, and link these attributes to venture outcomes over time. Contrary to expectations, we find that minimizing adaptability by adhering to a strong, persistent vision often results in better short-term outcomes as measured by quality of the pitch in digital startups. It also however results in worse long-term outcomes as measured by revenue, funding, and pivoting to a new venture. A more adaptable approach, when combined with a mentor who can facilitate this strategy by providing access to a structurally diverse social network, can offer the best combination of short- and long-run outcomes. The results suggest that guidance on mentor selection—especially selecting for the mentor’s social network attributes—is important over time for reaping the benefits of an adaptable strategy, particularly for digital ventures at their early-stage.

Teaching

Current Courses (Spring 2025)

  • OIDD3140 - Enabling Technologies

    Conducting business in a networked economy invariably involves interplay with technology. The purpose of this course is to improve understanding of technology (what it can or cannot enable), the business drivers of technology-related decisions in firms, and to stimulate thought on new applications for commerce (including disruptive technologies). The class provides a comprehensive overview of various emerging technology enablers and culminates in discussion of potential business impact of these technologies in the near future. No prior technical background is assumed and hence every effort is made to build most of the lectures from the basics. However, the Fall semester class will assume basic understanding of statistics and will focus more on big data analytics. Some assignments in the fall will involve data analytics using Python or R.

    OIDD3140001 ( Syllabus )

    OIDD3140002 ( Syllabus )

    OIDD3140003 ( Syllabus )

  • OIDD9950 - Dissertation Preparation

    OIDD9950019 ( Syllabus )

All Courses

  • OIDD3140 - Enabling Technologies

    Conducting business in a networked economy invariably involves interplay with technology. The purpose of this course is to improve understanding of technology (what it can or cannot enable), the business drivers of technology-related decisions in firms, and to stimulate thought on new applications for commerce (including disruptive technologies). The class provides a comprehensive overview of various emerging technology enablers and culminates in discussion of potential business impact of these technologies in the near future. No prior technical background is assumed and hence every effort is made to build most of the lectures from the basics. However, the Fall semester class will assume basic understanding of statistics and will focus more on big data analytics. Some assignments in the fall will involve data analytics using Python or R.

  • OIDD3990 - Supervised Study

    This course number is currently used for several course types including independent studies, experimental courses and Management & Technology Freshman Seminar. Instructor permission required to enroll in any independent study. Wharton Undergraduate students must also receive approval from the Undergraduate Division to register for independent studies. Section 002 is the Management and Technology Freshman Seminar; instruction permission is not required for this section and is only open to M&T students. For Fall 2020, Section 004 is a new course titled AI, Business, and Society. The course provides a overview of AI and its role in business transformation. The purpose of this course is to improve understanding of AI, discuss the many ways in which AI is being used in the industry, and provide a strategic framework for how to bring AI to the center of digital transformation efforts. In terms of AI overview, we will go over a brief technical overview for students who are not actively immersed in AI (topic covered include Big Data, data warehousing, data-mining, different forms of machine learning, etc). In terms of business applications, we will consider applications of AI in media, Finance, retail, and other industries. Finally, we will consider how AI can be used as a source of competitive advantage. We will conclude with a discussion of ethical challenges and a governance framework for AI. No prior technical background is assumed but some interest in (and exposure to) technology is helpful. Every effort is made to build most of the lectures from the basics.

  • OIDD6620 - Enabling Technologies

    This course is about understanding emerging technology enablers with a goal of stimulating thinking on new applications for commerce. The class is self-contained (mainly lecture-based) and will culminate in a class-driven identification of novel businesses that exploit these enablers. No prerequisite or technical background is assumed. Students with little prior technical background can use the course to become more technologically informed. Those with moderate to advanced technical background may find the course a useful survey of emerging technologies. The course is recommended for students interested in careers in consulting, investment banking and venture capital in the tech sector. OIDD 6620 will be taught in the regular 1 CU format by Prof Lynn Wu. When taught by Prof Hosanagar, OIDD 6620 will be delivered in a 0.5 CU format. The shorter course will focus primarily on Mobile, Data/AI, and Web3.

  • OIDD9550 - Research Sem in Info Sys

    This course provides an overview of some of the key Information Systems literature from the perspective of Insormation Strategy and Economics (ISE) and Information Decision Technologies (IDT). This course is intended to provide an introduction for first year OIDD doctoral students, as well as other Wharton doctoral students, to important core research topics and methods in ISE and IDT in order for students to do research in the field of Information Systems. While it is intended as a "first course" for OPIM doctoral students in ISE and IDT, it may also be useful for students who are engaged in research or plan to perform information technology related research in other disciplines.

  • OIDD9600 - Res Sem in Info Tech

    Explores economic issues related to information technology, with emphasis on research in organizational or strategic settings. The course will follow a seminar format, with dynamically assigned readings and strong student contribution during class sessions (both as participant and, for one class, as moderator.)

  • WH2970 - Wh Industry Exploration

    WIEP features short-term courses that focus on various industries and feature visits to businesses, lectures, extracurricular activities, and networking opportunities with alumni. Students must apply online: https://undergrad-inside.wharton.upenn.edu/wiep/

Awards and Honors

  • Kauffman Best Paper Award, 2019
  • Best Student Paper Runner up at CHITA, 2019
  • The Sandy Slaughter Early Career Award, 2019 Description

    The Sandy Slaughter Early Career Award recognizes and honors early career individuals who are on a path towards making outstanding intellectual contributions to the information systems discipline.

  • AIS Early Career Award, 2018 Description

    The AIS Early Career Award recognizes individuals in the early stages of their careers who have already made outstanding research, teaching, and/or service contributions to the field of information systems.

  • AIS Best Publication, 2014 Description

    The best publication of the year by the Association of Information Systems

  • ISR Best Published Paper, 2014 Description

    Best published paper in 2013 for the Information System Research Journal

  • Best Paper Award at HICSS, 2013
  • Best Paper Award at ICIS, 2009

In the News

Knowledge at Wharton

Wharton Stories

Activity

Latest Research

Lynn Wu and Ranthsbotham, Sam (2024), Can AI Help Your Company Innovate? It Depends, Harvard Business Review, 102 (4).
All Research

In the News

AI in 2025: What Challenges Lie Ahead?

Wharton’s Lynn Wu predicts that the runaway growth of artificial intelligence will hit some roadblocks in 2025, including cost and data limitation.Read More

Knowledge at Wharton - 1/7/2025
All News

Wharton Magazine

The Rise of AI
Wharton Magazine - 10/20/2023

Wharton Stories

A large group of people attending a conference or seminar in a modern conference room. A presenter stands near a screen displaying information on Data Drives Humanity at Wharton & Penn Engineering’s Women in Data Science Conference

As the 2024 Women in Data Science Conference (WiDS) opened with tours and a storytelling workshop at the Penn Museum of Archaeology and Anthropology, a journey as old as time unfolded for attendees. Led through galleries that included items from a lost queen of Persia to ancient Mayan glyphs, first…

Wharton Stories - 03/01/2024
All Stories